ファイル:SPP silver-air interface 370nm.gif
ページのコンテンツが他言語でサポートされていません。
表示
SPP_silver-air_interface_370nm.gif (480 × 320 ピクセル、ファイルサイズ: 475キロバイト、MIME タイプ: image/gif、ループします、30 フレーム、2.1秒)
ウィキメディア・コモンズのファイルページにある説明を、以下に表示します。
|
概要
解説SPP silver-air interface 370nm.gif |
English: E-field of a surface plasmon polariton, at the silver-air interface. The animation shows how the E-field varies over an optical cycle. Free-space wavelength is 370nm, so the permittivity of silver is -2.62 + 0.626i. The picture is 0.3 * 370 nanometers across horizontally. |
日付 | |
原典 | 投稿者自身による著作物 |
作者 | Sbyrnes321 |
ライセンス
この作品の著作権者である私は、この作品を以下のライセンスで提供します。
このファイルはクリエイティブ・コモンズ CC0 1.0 全世界 パブリック・ドメイン提供のもとで利用可能にされています。 | |
ある作品に本コモンズ証を関連づけた者は、その作品について世界全地域において著作権法上認められる、その者が持つすべての権利(その作品に関する権利や隣接する権利を含む。)を、法令上認められる最大限の範囲で放棄して、パブリック・ドメインに提供しています。
この作品は、たとえ営利目的であっても、許可を得ずに複製、改変・翻案、配布、上演・演奏することが出来ます。 http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Source code
この GIF ラスター画像はMatplotlibで作成されました。
"""
(C) Steven Byrnes, 2013. This code is released under the MIT license
http://opensource.org/licenses/MIT
This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.
Creates an animation of the electric field vectors of a
surface-plasmon-polariton wave. The metal-dielectric interface is at z=0,
with metal at z<0 and dielectric (such as air) at z>0.
"""
# Use Python 3 style division and print
# a/b is real division, a//b is integer division
from __future__ import division, print_function
import numpy as np
from cmath import exp, pi
import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))
# --- PART 1 OF 2: PHYSICS --- #
def Efield(x_times_kvac, z_times_kvac, t_times_omega, eps_m, eps_d, print_wave_properties=False):
""""
Inputs:
* x_times_kvac and z_times_kvac are the coordinates (x,z) multiplied
by the vacuum angular wavenumber kvac = omega / c.
* t_times_nu is the time t multiplied by frequency nu.
* eps_m and eps_d are the complex permittivities of the metal and dielectric.
Output: The electric field vector (E_x,E_z). It is scaled so that
E_z(0, 0, tw, e1, e2) = cos(tw) on the dielectric side of the interface.
"""
# Calculate components of the angular wavevector in the dielectric and
# metal, as a multiple of kvac = omega / c:
eps_m = complex(eps_m) #cast to complex, so square roots won't raise errors.
kx_over_kvac = (eps_m * eps_d / (eps_m + eps_d))**(1/2)
kzd_over_kvac = (eps_d - kx_over_kvac**2)**(1/2)
kzm_over_kvac = (eps_m - kx_over_kvac**2)**(1/2)
# Pick the correct square-roots, so that e^(i*k*z) decays away from interface
if kzd_over_kvac.imag < 0:
kzd_over_kvac *= -1
if kzm_over_kvac.imag > 0:
kzm_over_kvac *= -1
#double-check the boundary condition
almost_equal = lambda a,b,tolerance : (abs(a-b) / (abs(a) + abs(b))) < tolerance
if not almost_equal(kzd_over_kvac * eps_m, kzm_over_kvac * eps_d, 1e-10):
raise ValueError('Something is wrong! Boundary condition fails!')
if print_wave_properties:
print('kx / kvac = ', kx_over_kvac)
print('kzd / kvac = ', kzd_over_kvac)
print('kzm / kvac = ', kzm_over_kvac)
print('Wavelength / (Vacuum wavelength) = ', 1/(kx_over_kvac.real))
if kx_over_kvac.imag != 0:
print('(Decay length) / (Vacuum wavelength) = ', 1/(kx_over_kvac.imag))
else:
print('Wave does not decay, it propagates forever.')
print('(Decay length into dielectric) / (Vacuum wavelength) = ', 1/(kzd_over_kvac.imag))
print('(Decay length into metal) / (Vacuum wavelength) = ', -1/(kzm_over_kvac.imag))
if z_times_kvac > 0:
# dielectric
Ez = exp(1j * kx_over_kvac * x_times_kvac + 1j * kzd_over_kvac * z_times_kvac - 1j * t_times_omega)
Ex = -Ez * kzd_over_kvac / kx_over_kvac
else:
# metal
Ez = (kzd_over_kvac / kzm_over_kvac) * exp(
1j * kx_over_kvac * x_times_kvac + 1j * kzm_over_kvac * z_times_kvac - 1j * t_times_omega)
Ex = -Ez * kzm_over_kvac / kx_over_kvac
return (Ex.real, Ez.real)
# --- PART 2 OF 2: DRAWING --- #
def draw_box(x1, x2, y1, y2, color):
"""
Code to draw a rectangular box in matplotlib ... used to color the metal area.
See http://matplotlib.org/users/path_tutorial.html
"""
vertices = [ (x1, y1), (x1, y2), (x2, y2), (x2, y1), (x1, y1)]
codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY]
path = Path(vertices, codes)
#lw=0 means no outline; zorder=-1 means it shouldn't block the arrows.
return patches.PathPatch(path, facecolor=color, lw=0, zorder=-1)
def draw_frame(t_times_omega, eps_m, eps_d, aspect_ratio=1.5,
frac_metal=0.5, fig_width_px=480, x_range_times_kvac=2,
img_filename=None):
"""
Draw one frame of the animation.
Inputs:
* t_times_omega is time multiplied by angular frequency,
it goes 0 --> 2pi each cycle.
* eps_m and eps_d are the dielectric constants of the metal and dielectric
* aspect_ratio is width over height
* frac_metal is how much of the image is taken up by the metal.
* fig_width_px is figure width in pixels
* x_range_times_kvac is the width of the image as a multiple of kvac.
* "img_filename" is what to save the frame as (or None to not save it).
"""
# Figure geometry...
fig_height_px = fig_width_px // aspect_ratio
dpi = 80 #This number doesn't affect the final animation...
fig_width_inches = fig_width_px / dpi
fig_height_inches = fig_height_px / dpi
# Coordinate limits in figure. All are implicitly multiplied by kvac.
z_range_times_kvac = x_range_times_kvac / aspect_ratio
xmin = 0
xmax = x_range_times_kvac
zmin = -z_range_times_kvac * frac_metal
zmax = z_range_times_kvac * (1-frac_metal)
# How many arrows to draw?
num_arrows_x = 15
num_arrows_z = num_arrows_x // aspect_ratio
# Pick arrow coordinates...
arrow_x_list, spacing = np.linspace(xmin, xmax, num=num_arrows_x,
endpoint=False, retstep=True)
arrow_x_list += spacing / 2
arrow_z_list, spacing = np.linspace(zmin, zmax, num=num_arrows_z,
endpoint=False, retstep=True)
arrow_z_list += spacing / 2
X,Z = np.meshgrid(arrow_x_list, arrow_z_list)
# Arrow length scale: Larger number = smaller arrows
arrow_len_scale = 15
# Calculate the length of each arrow
Ex_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[0])
Ex_array = Ex_func(X, Z)
Ez_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[1])
Ez_array = Ez_func(X, Z)
# Open a new figure with correct aspect ratio and pixel count and white background
fig = plt.figure(figsize = (fig_width_inches,fig_height_inches), dpi=dpi, facecolor='w')
# Draw a new set of axes that fill the entire figure area
ax=fig.add_axes((0,0,1,1),axisbg='w')
ax.set_axis_off()
# Color the metal part
metal_color = '#dddddd' #light gray
ax.add_patch(draw_box(xmin,xmax,zmin,0,metal_color))
# Draw the arrows
ax.quiver(X, Z, Ex_array , Ez_array , scale=arrow_len_scale, scale_units='width', pivot='middle')
ax.set_xlim(xmin, xmax)
ax.set_ylim(zmin, zmax)
if img_filename is not None:
fig.savefig(os.path.join(directory_now, img_filename), dpi=dpi)
def draw_anim(eps_m, eps_d, anim_filename='anim.gif', frames_in_anim=30,
total_anim_time_in_sec=2, keep_frame_images=False, **kwargs):
"""
Create an animated GIF. **kwargs are all the keyword arguments to
draw_frame()
keep_frame_images=True to save the individual frame image files that make
up the animation; otherwise they are created and immediately deleted.
"""
filename_list = ['temp' + str(n) + '.png' for n in range(frames_in_anim)]
for n in range(frames_in_anim):
draw_frame(2*pi*n/frames_in_anim, eps_m, eps_d,
img_filename=filename_list[n], **kwargs)
seconds_per_frame = total_anim_time_in_sec / frames_in_anim
frame_delay = str(seconds_per_frame * 100)
command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + [anim_filename]
# Use the "convert" command (part of ImageMagick) to build the animation
subprocess.call(command_list, cwd=directory_now)
if keep_frame_images is False:
for filename in filename_list:
os.remove(os.path.join(directory_now, filename))
###################################################################
if True:
# Silver-air interface at 370nm, using data from Palik
eps_m = -2.62 + 0.626j
eps_d = 1
# Print diagnostics
Efield(0, 0, 0, eps_m, eps_d, print_wave_properties=True)
# Create animation
draw_anim(eps_m, eps_d, anim_filename='Silver_370nm_Palik.gif')
このファイルに描写されている項目
題材
ウィキデータ項目がない値
2 12 2013
ファイルの履歴
過去の版のファイルを表示するには、その版の日時をクリックしてください。
日付と時刻 | サムネイル | 寸法 | 利用者 | コメント | |
---|---|---|---|---|---|
現在の版 | 2013年12月2日 (月) 22:06 | 480 × 320 (475キロバイト) | Sbyrnes321 | User created page with UploadWizard |
ファイルの使用状況
以下のページがこのファイルを使用しています:
グローバルなファイル使用状況
以下に挙げる他のウィキがこの画像を使っています:
- ca.wikipedia.org での使用状況
- en-two.iwiki.icu での使用状況