「オブジェクト指向プログラミング」の版間の差分
m →代表的なオブジェクト指向言語: い抜き言葉「やってる」「してる」の使用を回避 |
Shionomisaki2458 (会話 | 投稿記録) m 仮リンクの修正 |
||
(36人の利用者による、間の329版が非表示) | |||
1行目: | 1行目: | ||
{{翻訳中途|[[:en:Object-oriented programming]](13:57, 15 November 2021 UTC)の翻訳|date=2021年11月}} |
|||
{{複数の問題 |
|||
{{プログラミング・パラダイム}} |
|||
|独自研究=2018年2月 |
|||
|正確性=2019年2月 |
|||
|出典の明記=2019年2月 |
|||
}} |
|||
{{プログラミング言語|index=おふしえくとしこうふろくらみんく}} |
|||
[[ファイル:Object oriented design object.jpg|境界|右|フレームなし]] |
|||
'''オブジェクト指向プログラミング'''(オブジェクトしこうプログラミング、{{Lang-en-short|''object-oriented programming''}}、略語:OOP)は、'''[[オブジェクト指向]]'''に基づいたコンピュータプログラミング手法である。[[オブジェクト (プログラミング)|オブジェクト]]は概ねデータ([[変数 (プログラミング)|変数]]、[[プロパティ (プログラミング)|プロパティ]])とコード([[関数 (プログラミング)|関数]]、[[メソッド (計算機科学)|メソッド]])の複合体を指す見解で一致しているが、その詳細の解釈は様々である。オブジェクト指向のプログラムはこの[[オブジェクト (プログラミング)|オブジェクト]]の集合として組み立てられる事になるが、その実装スタイルもまた様々である。 |
|||
'''オブジェクト指向プログラミング'''(オブジェクトしこうプログラミング、{{Lang-en-short|object-oriented programming}}, OOP)とは、「[[オブジェクト (プログラミング)|オブジェクト]]」という概念に基づいた[[プログラミングパラダイム]]の一つである。 |
|||
オブジェクト指向プログラミングという言葉自体は、計算機科学者[[アラン・ケイ]]によって生み出されている。1967年公開の言語「[[Simula|Simula67]]」の設計に印象を受けたケイが咄嗟に口にしたとされるこの造語は、彼が1972年から公開を始めた「[[Smalltalk]]」の設計を説明する中で初めて用いられている。なおケイが示した[[メッセージパッシング]]を中心にするオブジェクト指向は広く認知される事はなく、[[オブジェクト (プログラミング)|オブジェクト]]というプログラム概念を注目させるだけに留まっている。同時にケイの手から離れたオブジェクト指向は[[抽象データ型]]を中心にした解釈へと推移していき、1983年に計算機科学者[[ビャーネ・ストロヴストルップ]]が公開した「[[C++]]」が契機になって、日本では一般にOOPの三大要素と呼ばれる[[カプセル化]]、[[継承 (プログラミング)|継承]]、[[ポリモーフィズム|多態性]]といった[[プログラミングパラダイム|パラダイム]]が確立されている。 |
|||
OOPでは、相互に作用するオブジェクトを組み合わせてプログラムを設計する{{sfn|Kindler|Krivy|2011}}{{sfn|Lewis|Loftus|2008|loc=§1.6 "Object-Oriented Programming"}}。 |
|||
== 特徴 == |
|||
現行のオブジェクト指向プログラミングは事実上、1974年に[[バーバラ・リスコフ]]らが提唱した[[抽象データ型]]を基底概念にする方向性で定着している。[[抽象データ型]]のプログラム実装スタイルを具体的に規定したものが1~3であり、日本では一般に三大要素と呼ばれている。これに沿った言語仕様を備えたプログラミング言語がオブジェクト指向準拠と判別されている。4と5は、[[アラン・ケイ]]が重視する元祖的なコンセプトであり現在では主流から外れているが、オブジェクト指向の源流思想として蛇足ながら紹介を加える。 |
|||
OOPの方法として、[[クラスベース]]OOPと[[プロトタイプベース]]OOPがある。 |
|||
#[[カプセル化]](''encapsulation'') |
|||
クラスベースOOPでは、オブジェクトが属する集合として[[クラス (コンピュータ)|クラス]]を定義し、クラス定義からその[[インスタンス]]としてオブジェクトを生成する。 |
|||
#[[継承 (プログラミング)|継承]](''inheritance'') |
|||
プロトタイプベースOOPでは既存のオブジェクト(プロトタイプ)を複製し、プロトタイプの複製に変更を加えることで様々な対象を表すオブジェクトを生成する。 |
|||
#[[ポリモーフィズム|多態性]](''polymorphism'') |
|||
#[[メッセージ (コンピュータ)|メッセージ・パッシング]](''message passing'') |
|||
#[[ダイナミックバインディング|遅延バインディング]](''late binding'') |
|||
広く使われているプログラミング言語の多く、例えば[[C++]]や[[Java]]や[[Python]]などは、[[マルチパラダイムプログラミング言語|マルチパラダイム]]であるが、程度の差はあれ、オブジェクト指向プログラミングをサポートしており、大抵は[[命令型プログラミング|命令型]]や[[手続き型プログラミング]]との組み合わせで用いられる。 |
|||
=== カプセル化 === |
|||
一定の関連性を持つデータ(変数、プロパティ)と、それらを操作するコード(関数、プロシージャ)をひとまとめにしてオブジェクトとし、外部に対して必要とされるデータとコードのみを公開し、その他は内部に隠蔽する仕組みがカプセル化と呼ばれる。オブジェクトが持つコードは一般に「メソッド」と呼ばれる。オブジェクトの設計は{{仮リンク|単一責任の原則|en|Single-responsibility principle|label=}}に従い、一つの閉包機能をなすデータ構成とそれに関連したメソッドを定義するのが基本になる。公開されたデータは外部のメソッドから直接参照ないし変更する事できる。公開されたメソッドは同様に外部のメソッドから直接呼び出す事ができる。隠蔽されたデータとメソッドは外部からアクセスできず、これは{{仮リンク|情報隠蔽|en|information hiding}}と呼ばれる。 |
|||
== 歴史 == |
|||
既存オブジェクトのデータ構成とメソッド構成を引き継いで、新しい派生オブジェクトを定義する仕組みが継承と呼ばれる。引き継ぐ際には新たなデータとメソッドを自由に追加できるので、派生オブジェクトの構成は既存内容+追加内容になる。継承構造は、既存束縛で真になる式は派生束縛でも真になるという[[リスコフの置換原則]]を遵守する。オブジェクトはソースコード上ではクラスとして定義されるので、継承元の親クラスはスーパークラス、継承先の子クラスはサブクラスと呼ばれる。クラスは自身のスーパークラスを複数個指定する事もできる。一つのスーパークラスを継承するのは単一継承、複数のスーパークラスを継承してそれぞれの構成内容を引き継ぐのは多重継承と呼ばれる。継承とは本質的に異なるが、多重の仕組みは後述の[[インタフェース (抽象型)|インターフェース]]の実装で重視されており{{仮リンク|インターフェース分離の原則|en|Interface segregation principle|label=}}に活用されている。 |
|||
[[File:oop-uml-class-example.png|frame|right|[[統一モデリング言語|UML]]による[[クラス (コンピュータ)|クラス]]の表記法。この {{code|Button}} クラスは、データを表す[[変数 (プログラミング)|変数]](図中 {{code|xsize}} など)と[[メソッド (計算機科学)|関数]](図中 {{code|draw()}} など)を持つ。一般的なクラスは[[継承 (プログラミング)|継承]]により[[サブクラス (計算機科学)|サブクラス]]を持つことができる。また、オブジェクトはクラスの[[インスタンス]]である。]] |
|||
<!-- 以上、[[en:Object-oriented programming]] oldid=1047374345 の翻訳 --> |
|||
[[アラン・ケイ]]によれば “{{en|object-oriented}}”([[オブジェクト指向]])という言葉は、1967年ごろケイ自身が考案したものであるという{{sfn|Meaning|2003}}。しかし、現在のオブジェクト指向プログラミングという文脈における「オブジェクト」や「指向」を表す用語が初めて登場したのは、1950年代後半から1960年代前半にかけての[[マサチューセッツ工科大学|マサチューセッツ工科大学(MIT)]]においてである。 |
|||
1960年代初頭の[[人工知能]]グループ界隈では、「オブジェクト」はプロパティ(属性)を持つ個体識別可能なアイテム([[LISP]]の atom)を意味していた{{sfn|LISP 1 Programmers Manual|1960|p=88f}}{{sfn|LISP 1.5 Programmers Manual|1962|p=105}}。 |
|||
後にケイは、1966年にLISPの内部構造を詳細に理解したことが彼の考え方に強い影響を与えたと述べている{{sfn|Meaning|2003}}。 |
|||
{{Quote box |
|||
=== 多態性 === |
|||
|quote = 私は、オブジェクトとは、生物の細胞やネットワーク上の個々のコンピュータのようもの、そしてそれらのコミュニケーションは専らメッセージによって行なわれるもの、と考えていました (つまり、メッセージングは最初から存在していたのですが、プログラミング言語でメッセージングを実用的かつ効率的に行う方法を見つけるまでには時間がかかりました)。 |
|||
異なる種類のオブジェクトに同一の操作インターフェースを持たせる仕組みが多態性と呼ばれる。オブジェクト指向下の多態性は、クラスの派生関係またはオブジェクトの動的バインディングを利用した実行時変化プロセスである{{仮リンク|サブタイピング|en|subtyping|label=}}を指す。サブタイピング(派生型付け)は{{仮リンク|仮想関数(OOP)|en|Virtual function|label=仮想関数}}、[[多重ディスパッチ]]、{{仮リンク|動的ディスパッチ|en|Dynamic dispatch|label=}}の三手法に分類される。最もよく知られる仮想関数は多態性と同義に説明される事が多い。'''仮想関数'''は、メソッドが所属するクラスの派生関係のみに焦点を当てたシングルディスパッチであり、スーパークラス[[関数プロトタイプ|抽象メソッド]]への呼び出しから、その実行時のサブクラス実装メソッドに多方向分岐させるプロセスを指す。その際は[[Vtable]]と呼ばれる[[関数へのポインタ]]に近い仕組みが用いられる。抽象メソッドの使用は[[依存性逆転の原則]]に準じたものであり、それを中継点にした具体的メソッドの実装は[[開放/閉鎖原則|開放閉鎖の原則]]を体現するものである。'''多重ディスパッチ'''は、メソッドが所属するクラスの派生関係に加えて、メソッドの各引数のクラスの派生関係にも注目した形態である。各引数は実行時に[[ダウンキャスト|型ダウンキャスト]]されて、その引数の型パターンに対応したルーチンに分岐する。メソッド所属クラスの派生関係が絡まない場合は単一引数だとシングルディスパッチになる。多重ディスパッチの中でもプロセス分岐に関与するクラスが二つに限定されたものは[[ダブルディスパッチ]]と個別定義されている。'''動的ディスパッチ'''は、[[プロトタイプベース]]のOOPで用いられるものであり、実行時におけるオブジェクトのメソッド参照の切り替えカスタマイズによるプロセス変化を指す。また、[[クラスベース]]のOOPでもクラスの定義内容を操作できる[[リフレクション (情報工学)|リフレクション]]機能によってこれが再現される事もある。 |
|||
|author = アラン・ケイ |
|||
|source = {{harv|Meaning|2003}} |
|||
|width = 50% |
|||
}} |
|||
MITにおける初期の例としては、この他にも、1960年から1961年にかけて[[アイバン・サザランド]]が作成した[[Sketchpad]]が挙げられる。サザランドは、1963年の技術レポートの用語集 (Sketchpadに関する自身の博士論文をもとにしたもの)で、グラフィカルなインタラクションに特化しているとはいえ「オブジェクト」と「インスタンス」の概念を定義している (クラスの概念は"master"または"definition"として把握されている)。{{sfn|Sutherland|1963}} |
|||
=== メッセージ・パッシング === |
|||
また、MIT版の[[ALGOL]]であるAED-0では、データ構造 (この言語の方言では"plexes"と呼称)と手続きを直接結びつけ、後に「メッセージ」、「メソッド」、「メンバ関数」と呼ばれるようなものの萌芽がみられる。{{sfn|Nygaard|Dahl|1978}} |
|||
{{Quotation|''I thought of objects being like biological cells and/or individual computers on a network, only able to communicate with messages.'' |
|||
1962年、[[クリステン・ニゴール]]は{{仮リンク|ノルウェー計算センター|en|Norwegian Computing Center}}でシミュレーション言語のプロジェクトを開始した。これは彼が以前に用いた[[モンテカルロ法]]と実世界のシステムを概念化する仕事に基づくものであった。[[オーレ=ヨハン・ダール]]が正式にプロジェクトに参加し、[[UNIVAC I]] (UNIVAC 1107) 上で動作する[[Simula]]プログラミング言語が設計された。Simulaは、[[クラス (コンピュータ)|クラス]]や[[オブジェクト (プログラミング)|オブジェクト]]、継承、[[ダイナミックバインディング]]など、今日のオブジェクト指向プログラミングには不可欠である重要な概念を導入した。{{sfn|Holmevik|1994}} |
|||
(さながら生物の細胞、もしくはネットワーク上の銘々のコンピュータ、それらはただメッセージによって繋がり合う存在、僕はオブジェクトをそう考えている)|Alan Kay}}{{Quotation|''... each object could have several algebras associated with it, and there could be families of these, and that these would be very very useful.'' |
|||
Simulaはまた、プログラミングにおける{{仮リンク|データ保全|en|data security}}を考慮して設計されたものでもあった。プログラミングのデータ保全のために[[参照カウント]]による検出プロセスが実装されたのに加え、最終手段として[[ガベージコレクション|ガベージコレクタ]]が[[主記憶装置]](メモリ)内の使用されていないオブジェクトを削除するようになっていた。しかし、データオブジェクトの概念は1965年には既に確立されていたものの、プライベートやパブリックといった[[変数 (プログラミング)|変数]]の[[スコープ (プログラミング)|スコープ]]のレベルによるデータのカプセル化については、アクセスする手続きもまた隠蔽できなければならなかったため、Simulaでは実装されなかった。{{sfn|Dahl|2004}} |
|||
初期の段階では、Simulaはプログラミング言語[[ALGOL]] 60のための手続きパッケージとされていた。しかし、ALGOLによる制約に不満を感じた研究者たちは、UNIVAC ALGOL 60コンパイラを使用した本格的なプログラミング言語としてSimulaを開発することにした。ダールとニゴールは1965年から1966年にかけてSimulaの普及に尽力し、スウェーデン、ドイツ、[[ソビエト連邦]]などでSimulaの使用が増加した。1968年には、[[バロース B5000]]上で広く利用されるようになり、後には[[ウラル・コンピュータ|URAL-16コンピュータ]]上にも実装された。1966年、ダールとニゴールはSimulaの[[コンパイラ]]を書いた。彼らは、{{仮リンク|SIMSCRIPT|en|SIMSCRIPT}} (自由形式の英語的な汎用シミュレーション言語)を実装に用いて、[[アントニー・ホーア]]のレコード・クラス概念を取り入れることに熱心に取り組んだが、彼らは、一般化されたプロセスの概念として、レコード・クラスの属性を保持する層と、接頭辞 (prefix) の系列を保持する層の二層構造とする方式に辿り着いた。 |
|||
(銘々のオブジェクトは自身に伴う幾つかの「代数」を持つ、またそれらの家族たちもいるかもしれない、それらは極めて有用になるだろう)|Alan Kay}}{{Quotation|''The Japanese have a small word - ma ... The key in making great and growable systems is much more to design how its modules communicate rather than what their internal properties and behaviors should be.'' |
|||
接頭辞の系列を通じて、プロセスは先行する定義を参照し、それらの属性を追加することができる。このようにしてSimulaは、クラスとサブクラスの階層を導入し、これらのクラスからオブジェクトを生成することを可能にする方法を導入することとなった。{{sfn|Nygaard|Dahl|1978}} |
|||
1972年には[[System/360|IBM System/360]]および[[System/370|IBM System/370]]の[[IBMメインフレーム]]用にSimula 67コンパイラが完成{{sfn|Holmevik|1994}}。同年、フランスの[[CII 10070]]および[[CII Iris]] 80[[メインフレーム]]用のSimula 67コンパイラが無償で提供された。1974年には、Simulaユーザー会は23カ国のメンバーを有するまでになっていた。1975年初頭、[[PDP-10|DECsystem-10]]メインフレームファミリー用のSimula 67コンパイラが無償でリリースされ、同年8月までにDECsystem-10のSimula 67コンパイラは28サイトにインストールされた (そのうちの22サイトは北米)。オブジェクト指向のプログラミング言語としてSimulaは、貨物港における船舶と積載貨物の動きを調査・改善するための研究のような、物理モデリングの研究に携わる研究者に主に利用されていた{{sfn|Holmevik|1994}}。 |
|||
(日本語には「間」という言葉がある・・・成長的なシステムを作る鍵とは内部の特徴と動作がどうあるべきかよりも、それらがどう繋がり合うかをデザインする事なんだ)|Alan Kay}} |
|||
1970年代、[[パロアルト研究所|Xerox パロアルト研究所(PARC)]]において、[[アラン・ケイ]]、[[ダン・インガルス]]、[[アデル・ゴールドバーグ]]らによって、プログラミング言語[[Smalltalk]]の最初のバージョンが開発された。Smaltalk-72はプログラミング環境を含み、[[動的型付け]]であり、当初は[[コンパイラ|コンパイル]]してからの実行ではなく[[インタプリタ]]実行であった。Smalltalkは、言語レベルでのオブジェクト指向の適用と、グラフィカルな開発環境で注目されたが、Smalltalkが様々なバージョンを経て成長するにつれ、この言語への関心も高まっていった{{sfn|Meyer|2009}}。 |
|||
=== 遅延バインディング === |
|||
SmalltalkはSimula 67で導入されたアイデアの影響を受けてはいるものの、クラスを動的に生成・変更できるなど、完全に動的なシステムとして設計された{{sfn|Kay|1993}}。 |
|||
{{Quotation|''I realized that the cell/whole-computer metaphor would get rid of data,'' ... |
|||
1970年代、Smalltalkは[[LISP#LISPの歴史|Lispコミュニティ]]に影響を与え、Lispコミュニティは、[[Lispマシン]]を通じて開発者に紹介されたオブジェクトベースの技術を取り入れた。Lispの様々な拡張機能(LOOPS や{{仮リンク|Flavors|en|Flavors (programming language)}}などが導入した[[多重継承]]や[[Mixin]])の試みは、最終的に[[関数型プログラミング]]とオブジェクト指向プログラミングを統合し、{{仮リンク|メタオブジェクト・プロトコル|en|Metaobject protocol}}による拡張を可能にした[[Common Lisp Object System|Common Lispのオブジェクト指向システム]] (CLOS) へとつながった。 |
|||
(僕はこう気付いた、細胞であり全体でもあるコンピュータメタファーはデータを除去するであろうと、)|Alan Kay}}{{Quotation|''... there were two main paths that were catalysed by Simula. The early one (just by accident) was the bio/net non-data-procedure route that I took. The other one, which came a little later as an object of study was abstract data types, and this got much more play.'' |
|||
1980年代には、メモリ上のオブジェクトをハードウェアでサポートするプロセッサ・アーキテクチャを設計する試みがいくつか行われたが、[[Intel iAPX 432]]や[[リン (企業)|Linn Smart]]、{{仮リンク|Rekursiv|en|Rekursiv}}など、いずれも商業的に成功しなかった。 |
|||
1981年、ゴールドバーグは[[バイト (雑誌)|Byte Magazine]] 8月号のSmalltalk特集号で、Smalltalkとオブジェクト指向プログラミングをより多くの人々に紹介した。 |
|||
(''Simula''を触媒にした二本の道筋があった。初めの一本は細胞組織的な非データ手法、僕が選んだ方だ。少し遅れたもう一本は抽象データ型、こっちの方がずっと賑わってるね。)|Alan Kay}} |
|||
1986年、[[Association for Computing Machinery|ACM]]が主催する第一回[[OOPSLA]]が開催され、予想に反して1,000人が参加した。1980年代半ばには、[[ITT (企業)|ITT]]でSmalltalkを使っていた[[ブラッド・コックス]]によって[[Objective-C]]が開発され、博士論文でSimulaを扱っていた[[ビャーネ・ストロヴストルップ]]よってオブジェクト指向の[[C++]]が作られた{{sfn|Meyer|2009}}。 |
|||
1985年には、[[バートランド・メイヤー]]も[[Eiffel]]の最初の設計を行った。ソフトウェアの品質に焦点を当てたEiffelは、純粋なオブジェクト指向プログラミング言語であり、ソフトウェアのライフサイクル全体をサポートする記法をもつ。メイヤーは、ソフトウェア工学とコンピュータサイエンスの少数の重要なアイデアに基づいたEiffelでのソフトウェア開発手法を{{仮リンク|オブジェクト指向入門|en|Object-Oriented Software Construction}}で解説している。Eiffelでは、メイヤーが開発した信頼性担保の機構である[[契約プログラミング]]が、開発手法と言語の双方に不可欠な要素となっている。 |
|||
[[File:Tiobeindex.png|thumb|350px|[[:en:TIOBE index|TIOBE]] [[:en:Measuring programming language popularity|プログラミング言語の人気ランキング]]の2002年から2018年のグラフ。2000年代のオブジェクト指向言語[[Java]] (青)と[[手続き型プログラミング]]言語[[C言語|C]] (黒)の首位争いの様子]] |
|||
== 歴史 == |
|||
1990年代前半から半ばにかけて、オブジェクト指向プログラミングは、その技術をサポートするプログラミング言語が広く普及したことにより、[[プログラミングパラダイム]]として主要なものとなった。その中には、[[Microsoft Visual FoxPro|Visual FoxPro]] 3.0<ref group="注">1995年6月 Visual FoxPro 3.0, FoxPro は手続き型言語からオブジェクト指向言語へと進化した。Visual [[FoxPro]] 3.0では、データベースコンテナ、シームレスなクライアント/サーバー機能、ActiveXのサポート、OLEオートメーションとヌルのサポートが導入された。[http://www.foxprohistory.org/foxprotimeline.htm#summary_of_fox_releases Summary of Fox releases]</ref><ref>FoxProの歴史: [http://www.foxprohistory.org/tableofcontents.htm Foxprohistory.org]</ref><ref>1995年のVisual FoxPro 3.0 レビュー/ガイド: [http://www.dfpug.de/loseblattsammlung/migration/whitepapers/vfp_rg.htm DFpug.de]</ref>、[[C++]]<ref>{{Cite book|url=https://books.google.com/books?id=MHmqfSBTXsAC&pg=PA16|title=Object Oriented Programming with C++, 1E|isbn=978-81-259-2532-3|last1=Khurana|first1=Rohit|date=1 November 2009}}</ref>、[[Delphi]]<ref>マイナビTECH+: Delphiがトップ20位から脱落: 「Delphiは2001年6月にトップ20位入りを果たし、2000年代初頭には最も人気のある統合開発環境として広く使用されていた。」[https://news.mynavi.jp/techplus/article/20200306-988782/]</ref>などがある。 |
|||
オブジェクト指向プログラミングという考え方が生まれた背景には、計算機の性能向上によって従来より大規模な[[ソフトウェア]]が書かれるようになってきたということが挙げられる。大規模なソフトウェアが書かれコードも複雑化してゆくにつれ、ソフトウェア開発コストが上昇し、[[1960年代]]には「[[ソフトウェア危機]] ({{Lang|en|software crisis}})」といったようなことも危惧されるようになってきた。そこでソフトウェアの[[再利用 (プログラミング)|再利用]]、[[部品化 (プログラミング)|部品化]]といったようなことを意識した仕組みの開発や、[[ソフトウェア開発工程]]の体系化('''[[ソフトウェア工学]]''' ({{Lang|en|software engineering}}) の誕生)などが行われるようになった。 |
|||
その勢力は、オブジェクト指向プログラミング技術に支えられた[[グラフィカルユーザインタフェース]]の人気向上と共に高まった。動的なGUIライブラリとOOP言語が密接に連携している例としては、Smalltalkを規範にしたCのオブジェクト指向の動的メッセージング拡張である[[Objective-C]]で書かれた[[macOS]]の[[Cocoa (API)|Cocoa]]フレームワークなどが挙げられる。また、OOPツールキットの存在は、[[イベント駆動型プログラミング]]の人気を高めることにも繋がった(ただし、この概念はOOPに限定されるものではない)。 |
|||
[[チューリッヒ工科大学]]では、[[ニクラウス・ヴィルト]]らが、[[抽象化_(計算機科学)#データ抽象化|データ抽象化]]や{{仮リンク|モジュール化プログラミング|en|Modular programming}}などの研究を行っていた (ただし、これらは1960年代以前にも一般的に使われてはいた)。 |
|||
1978年に発表された[[Modula-2]]にはこの2つが盛り込まれており、その後に発表された[[Oberon]]では、オブジェクト指向やクラスなどに対する独自のアプローチが盛り込まれている<ref name=ETH>{{Cite report |last=Wirth |first=Niklaus |title=From Modula to Oberon and the programming language Oberon |series=ETH Technical Reports D-INFK |volume=Band 82 |publisher=Wiley |url=https://doi.org/10.3929/ethz-a-005363226}}</ref>。 |
|||
オブジェクト指向の機能は、[[Ada]]、[[BASIC]]、[[Fortran]]、[[Pascal]]、[[COBOL]]など、既存の多くの言語に追加されていったが、しかし、設計当初にこれらの機能を想定していなかった言語に追加した場合、コードの互換性や保守性には問題が生じることが多かった。 |
|||
このような流れの中で、プログラムを構成するコードとデータのうち、コードについては[[プロシージャ|手続き]]や[[関数 (プログラミング)|関数]]といった仕組みを基礎に整理され、その構成単位を[[ブラックボックス]]とすることで再利用性を向上し、部品化を推進する仕組みが提唱され'''[[構造化プログラミング]]''' ({{Lang|en|structured programming}}) として{{要出典範囲|date=2019年2月|[[1967年]]}}に[[エドガー・ダイクストラ]] ({{Lang|en|Edsger Wybe Dijkstra}}) らによってまとめあげられた(プログラミング言語の例としては[[Pascal]] [[1971年]])。なお、それに続けて「しかしデータについては相変わらず主記憶上の記憶場所に置かれている限られた種類の[[基本データ型]]の値という比較的低レベルの抽象化から抜け出せなかった。これはコードはそれ自身で意味的なまとまりを持つがデータはそれを処理するコードと組み合わせないと十分に意味が表現できないという性質があるためであった。」といったように、ほぼ間違いなく説明されている。 |
|||
最近では、主としてオブジェクト指向でありながら、手続き型プログラミングの方法論にも対応した言語が数多く登場している。そのような言語としては、[[Python]]や[[Ruby]]がある。最近の商業的なオブジェクト指向言語で最も重要なものには、[[サン・マイクロシステムズ]]社が開発した[[Java]]や、Microsoftの[[.NET Framework|.NET]]プラットフォーム用に設計された[[C Sharp|C#]]、[[Visual Basic .NET]] (VB.NET) が挙げられる。 |
|||
そこでデータを構造化し、ブラックボックス化するために考え出されたのが、データ形式の定義とそれを処理する手続きや関数をまとめて一個の構成単位とするという考え方で'''[[モジュール]]''' ({{Lang|en|module}}) と呼ばれる概念である([[プログラミング言語]]の例としては[[Modula-2]] 1979年)。しかし定義とプログラム内の実体が一対一に対応する手続きや関数とは異なり、データはその形式の定義に対して値となる実体([[インスタンス]]と呼ばれる)が複数存在し、各々様々な寿命を持つのが通例であるため、そのような複数の実体をうまく管理する枠組みも必要であることがわかってきた。そこで単なるモジュールではなく、それらのインスタンスを整理して管理する仕組み(例えば[[クラス (コンピュータ)|クラス]]とその[[継承 (プログラミング)|継承]]など)まで考慮して生まれたのが[[オブジェクト (プログラミング)|オブジェクト]]という概念である(プログラミング言語の例としては1967年の[[Simula|Simula 67]]<!--言語機能としての「クラス」はSimula 67から-->)。 |
|||
これら二つのフレームワークは、実装を抽象化することによるOOP使用の利点をそれぞれの方法で示している。VB.NETとC#間では言語間継承をサポートしており、一方の言語で定義されたクラスが他方の言語で定義されたクラスをサブクラス化することができる<ref>共通型システム|Microsoft Docs [https://docs.microsoft.com/ja-jp/dotnet/standard/base-types/common-type-system]</ref>。 |
|||
== OOPLの特徴 == |
|||
Simulaのオブジェクトとクラスというアイデアは異なる二つの概念に継承される。一つはシステム全てをオブジェクトの集合と捉え、オブジェクトの相互作用を'''メッセージ'''に喩えた「[[オブジェクト指向]]」である。オブジェクト間の相互作用をメッセージの送受と捉えることで、オブジェクトは受信したメッセージに見合った手続き単位(≒関数)を自身で起動すると考える。結果オブジェクトは自身の持つ手続きのカプセル化を行うことができ、メッセージが同じでもレシーバオブジェクトによって行われる手続きは異なる――[[ポリモーフィズム|多相性]](ポリモーフィズム)を実現した(このメッセージを受け実行される手続き単位は、メッセージで依頼されたことを行うための「手法」の意味で[[メソッド (計算機科学)|メソッド]]と呼ばれる)。この思想に基づき作られたのが[[Smalltalk]]([[1972年]])であり、[[オブジェクト指向]]という言葉はこのとき[[アラン・ケイ]]によって作られた。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->オブジェクト指向プログラミング言語 ('''OOPL''') では、オブジェクトを使用するが、言語仕様でOOP対応を謳っていても、関連する技術や構造のすべてが言語機能により直接サポートされているわけではない。以下に挙げる特徴は、特に言及されている例外を除いて、クラス指向やオブジェクト指向の傾向が強いとされる言語 (あるいはOOPをサポートする[[マルチパラダイムプログラミング言語]])に共通すると考えられるものである。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
=== 非OOPLとの共通点 ===<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
一方、Smalltalkとは別にSimulaの影響を受け作られた[[C++]]([[1979年]])は[[抽象データ型]]のスーパーセットとしてのクラス、オブジェクトに注目し、オブジェクト指向をカプセル化、継承、多相性をサポートするものと再定義した(その際、実行時速度重視およびコンパイラ設計上の制約により、変数メタファである[[動的束縛]]の特徴は除外された)。これらは当初[[抽象データ型]]、[[派生]]、[[メソッド (計算機科学)#仮想関数|仮想関数]]と呼ばれ、オブジェクトのメンバ関数を実体ではなくポインタとすることで、継承関係にあるクラスのメンバ関数の[[オーバーライド]](上書き)を可能にしたことで、多相性を実現した(この流儀では'''メッセージメタファ'''はオブジェクト指向に必須ではないものと定義し、オブジェクトの持つ手続きをメソッドとは呼ばず[[メソッド (計算機科学)|メンバ関数]]と呼ぶ)。この他、Smalltalkにある[[動的束縛]]の類似的な機能としてオーバーロード([[多重定義]])が実装されている。 |
|||
; [[変数 (プログラミング)|変数]]: [[整数型]]や英数字の[[キャラクタ (コンピュータ)|文字]]のような形式化された少数の組み込み[[データ型]]の情報、または、[[文字列]]、[[リスト (抽象データ型)|リスト]]、[[ハッシュテーブル]]などの[[データ構造]]に、組み込み型もしくは、[[ポインタ (プログラミング)|ポインタ]]が格納されたものを結果として格納することができる。 |
|||
; 手続き(関数、メソッド、[[サブルーチン]]とも呼ばれる): 入力を受け取り、出力を生成し、データを操作する。近年の言語には、[[制御構造#ループ|ループ]]や[[if文|条件構文]]のような[[構造化プログラミング]]の構成要素が含まれる。 |
|||
[[:en:Modular programming|モジュラープログラミング]]サポートでは、手続きをファイルやモジュールにまとめて整理する機能がある。モジュールは[[名前空間]]を持つため、あるモジュールの識別子が、他のモジュールの同名の手続きや変数と衝突することを避けることができる。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
Smalltalkはこの「全てをオブジェクトとその相互作用で表現する」というデザインに立ち設計されたため、全てをファイルと捉える'''ファイル指向[[オペレーティングシステム]]'''からの脱却と、プログラムをフロー制御された手続きと捉える'''手続き型言語'''からの脱却が行われた。そのためSmalltalkは自身が'''オブジェクト指向オペレーティングシステム'''でもあること、メッセージ・パッシングなどの特徴を持った。これは当時のプログラム言語としては特異的であり、[[ガベージコレクション|ガベージコレクタ]]を必要とし、高度な最適化が試される前のバイトコード[[インタプリタ]]で実行される処理の重さも手伝って先進的ではありながら普及しがたいものであると捉えられた。また、メッセージでの多相性は、変数へのオブジェクトの[[動的束縛]]が前提となるため、静的型チェック機構でのサポートが難しく、C++等の実行時性能重視の言語にとって実装から除外すべき特徴となった。 |
|||
=== クラスとオブジェクト === |
|||
C++の創始者[[ビャーネ・ストロヴストルップ]]は、Smalltalkが目指したある種の理想の追求には興味が無く、現用としての実用性を重視した。そのため、C++の再定義した「オブジェクト指向」は既存言語の拡張としてオブジェクト指向機能を実装できることでブレイクスルーを迎え急速に普及する。Smalltalkが単なるメソッドの動的呼び出しをメッセージ送信に見立て、呼び出すメソッドが見つからないときのみメッセージをハンドリングできるようにした「省コスト版」の機構を発明し以降それを採用するに至った経緯も手伝って、'''メッセージ送信'''という考え方はやや軽視されるようになり、オブジェクト指向とはC++の再定義したものと広く認知されるようになった。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->オブジェクト指向プログラミング(OOP)をサポートする言語は、コードの再利用と拡張性のために、典型的には、[[クラスベース|クラス]]または[[プロトタイプベース|プロトタイプ]]の形で[[継承 (プログラミング)|継承]]を使用する。クラスを使用するものは、主に二つの概念をサポートする。 |
|||
; [[クラス (コンピュータ)|クラス]] |
|||
: 与えられた型やクラスのオブジェクトのデータ形式やそれらを利用可能な手続きの定義であり、また、データや手続き (クラスメソッドとも呼ばれる)そのものを含む場合もある。つまり、クラスは、メンバーとなるデータや手続きを含むものである。 |
|||
; [[オブジェクト (プログラミング)|オブジェクト]] |
|||
: クラスのインスタンス |
|||
<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->オブジェクトは、システムが扱おうとする(多くは現実世界の)対象を表現したものである。例えば、描画アプリケーションにおける「円」・「四角」・「メニュー」などのオブジェクトや、オンラインショッピングシステムにおける「ショッピングカート」・「顧客」・「商品」などのオブジェクトがある<ref>{{cite book|last=Booch|first=Grady|title=Software Engineering with Ada|year=1986|publisher=Addison Wesley|isbn=978-0-8053-0608-8|page=220|url=https://en.wikiquote.org/wiki/Grady_Booch|quote=Perhaps the greatest strength of an object-oriented approach to development is that it offers a mechanism that captures a model of the real world.}}</ref>。 |
|||
[[1980年]]代後半に次々と生まれたオブジェクト指向分析・設計論は、[[Smalltalk]]を源流とするオブジェクト指向を基に組み立てられた。そのころSmalltalkは商用展開こそされていたが広く普及しているとは言えず、一般には[[C++]]での[[実装]]が多くを占めた。しかしC++はSmalltalkと思想的にかなり異なる点や、同様のことを実現する際の実装面での複雑さや制約が問題とされた。このニーズを受けC++の提示した抽象データ型にクラスを適用する現実的な考え方と親しまれたALGOL系の構文を踏襲しつつ、内部的には柔軟なSmalltalkのオブジェクトモデルを採用し、'''メソッド'''などの一部用語やリフレクション、実行時動的性などSmalltalk色も取り入れた[[Java]]が注目を集めた([[1995年]]に登場。元々はモバイル機器向け言語処理系として開発された)。程なくSmalltalkやSELFで達成された[[仮想機械|仮想マシン(バイトコードインタープリタ)]]高速化技術の転用により実用的速度を得、バランス感覚に長けたJavaの台頭によって[[オブジェクト指向開発]]に必要な要素の多くが満たされ、[[1990年代]]後半からオブジェクト指向は広く普及するようになった。 |
|||
オブジェクトは、ファイルのオープンを表すオブジェクトや、[[米国慣用単位]]から[[メートル法]]に変換するサービスを提供するオブジェクトのように、より抽象的なエンティティを表すこともある。 |
|||
{{Quote box |
|||
== 代表的なオブジェクト指向言語 == |
|||
|quote = オブジェクト指向プログラミングとは、単なるクラスやオブジェクトではなく、データフィールドやメソッドを含んだオブジェクト (データ構造)を中心としたプログラミングパラダイム全般のことです。クラスを使って、関係のないメソッドをまとめて整理する——これがオブジェクト指向の本質ではないことを理解しましょう。 |
|||
[[ファイル:History of object-oriented programming languages.svg|サムネイル|オブジェクト指向言語の系譜|リンク=Special:FilePath/History_of_object-oriented_programming_languages.svg|代替文=]] |
|||
|author = Junade Ali |
|||
オブジェクト指向を総体的または部分的にサポートする機能を備えたプログラミング言語の公開は、1980年代後半から目立ち始めている。オブジェクト指向言語の分類法は複数あるが、Smalltalkをルーツにする[[メッセージパッシング]]の構文が重視されているか否かでまず大別され、そうでないものはさらに[[クラスベース]]と[[プロトタイプベース]]で分けられる事が多い。 |
|||
|source = ''Mastering PHP Design Patterns''{{harv|Ali|2016|p=11}} |
|||
|width = 50% |
|||
|align = right |
|||
}} |
|||
各々のオブジェクトは、特定のクラスの[[インスタンス]]と呼ばれる (例えば、<code>name</code>フィールドに <code>"Mary"</code>が設定されているオブジェクトは、クラス<code>Employee</code>のインスタンスとなる)。OOPの手続きは[[メソッド (計算機科学)|メソッド]]と呼ばれ、変数は、[[フィールド (計算機科学)|フィールド]]、メンバー、属性、プロパティとも呼ばれる。関連して、以下のような用語がある |
|||
[[クラスベース]]では「C++」「Java」「C#」「Swift」がその代表とされる。[[プロトタイプベース]]では「Python」「JavaScript」「Ruby」が有名である。[[メッセージパッシング|メッセージ構文]]重視では「Smalltalk」「Objective-C」「Self」などがある。言語仕様の中でオブジェクト指向の存在感が比較的高い代表的なプログラミング言語は以下の通りである。 |
|||
; [[クラス変数]] |
|||
: クラス自体に属する。変数をクラス全体に唯一のものとして所有する。 |
|||
; [[インスタンス変数]]または属性 |
|||
: 各々のオブジェクトに属する。データはオブジェクトごとに所有する。 |
|||
; [[メンバ変数]] |
|||
: 特定のクラスで定義されるクラス変数とインスタンス変数の両方を指す。 |
|||
; [[クラスメソッド]] |
|||
: クラス自体に属する。クラス変数へのアクセスのみ有し、手続き呼び出しからの入力のみ受け付ける。 |
|||
; [[インスタンスメソッド]] |
|||
: 各々のオブジェクトに対して、呼び出された特定のオブジェクトのインスタンス変数、入力、およびクラス変数にアクセスできる。 |
|||
オブジェクトは、複雑な内部構造を持った変数のようにアクセスされるが、多くの言語で実質的には[[ポインタ (プログラミング)|ポインタ]]でありインスタンス (ヒープやスタック内のメモリ上オブジェクト)への参照として機能する。オブジェクトは、内部コードと外部コードを分離を可能とする[[抽象化 (計算機科学)|抽象化]]の層を提供する。外部のコードは、特定の入力引数の組み合わせで特定のインスタンスメソッドを呼び出したり、インスタンス変数を読み込んだり、インスタンス変数に書き込んだりすることで、オブジェクトを使用することができる。オブジェクトは、[[コンストラクタ]]と呼ばれるクラス内の特定メソッドを呼び出すことで生成される。プログラムは実行中に、それぞれ独立して操作することが可能な同じクラスのインスタンスを多数作成することができる。これは、同じ手続きを異なるデータセットで簡便に利用する方法となる。 |
|||
;[[Simula|Simula 67]] 1967年 |
|||
:1962年に公開された[[Simula]]の後継版であり、[[クラス (コンピュータ)|クラス]]のプログラム概念を導入した最初の言語である。現実世界の擬似モデルを観測するシミュレーション・プログラム制作用に開発されたもので、クラスを実メモリに展開したオブジェクトは、その観測対象要素になった。Simulaのクラスは、プロシージャに専用変数と補助ルーチンを加えた小型モジュールに近いものであったが、継承と仮想関数という先進的な設計を備えていた事でオブジェクト指向言語の草分けと見なされるようになった。C++やJavaの源流になった。 |
|||
;[[Smalltalk]] 1972年 |
|||
:[[メッセージパッシング]]のプログラム概念を導入した最初の言語。数値、真偽値、文字列から変数、構造体、コードブロック、メタデータまでのあらゆる要素をオブジェクトとするデザインを編み出した最初の言語でもある。オブジェクト指向という言葉はSmalltalkの言語設計を説明する中で生み出された。オブジェクトの基礎的な振る舞いを規定する限られた予約語の他は、オブジェクトとメッセージのやり取りで制御構造を含めたあらゆるプロセスを表現出来た。専用のランタイム環境上で動作させる設計は、従来にない実行時多態性とセキュリティに繋がるモニタリングを実現した。これは後に仮想マシンと呼ばれるものとなり、JavaやC#に踏襲された。 |
|||
;[[C++]] 1983年 |
|||
:[[C言語]]に[[クラスベース]]のオブジェクト指向を追加したもの。Simulaの影響を受けている。[[静的型付け]]の[[クラス (コンピュータ)|クラス]]の仕組みが備えられて、カプセル化、継承、多態性の三仕様を実装している。[[テンプレート (プログラミング)|テンプレート機能]]、[[多重定義|関数&演算子オーバーロード]]、[[例外処理]]などのプログラミングパラダイムも導入された。元がC言語であるため、オブジェクト指向から逸脱したコーディングも多用できる点が物議を醸したが、その是非はプログラマ次第であるという結論に落ち着いた。 |
|||
;[[Objective-C]] 1984年 |
|||
:[[C言語]]に[[メッセージパッシング|メッセージ構文]]重視のオブジェクト指向を追加したもの。こちらはSmalltalkの影響を受けており、それに準じた[[メッセージパッシング]]の仕組みが備えられた。メッセージを受け取るクラスの定義による[[静的型付け]]と共に、メッセージを[[委譲]]するオブジェクトの実行時決定による[[動的型付け]]も設けられている。オブジェクト指向的には前述のC++よりも正統であると見なされた。制御構文が追加され、メッセージ構文仕様もやや簡素化されるなど実践上の利便性が図られており、Smalltalkよりもコーディングし易くなった。 |
|||
;[[Object Pascal]] 1986年 |
|||
:[[Pascal]]にクラスベースのオブジェクト指向を追加したもの。 |
|||
;[[Eiffel]] 1986年 |
|||
:[[Pascal]]にクラスベースのオブジェクト指向を追加したもの。[[契約プログラミング]]方針と厳格な名前付け方針による静的型付けを重視した言語である。引数パターンによる[[オーバーローディング]]が除外されている。継承されたクラス名はその都度ユニーク名にクローンされて[[菱形継承問題|多重継承時の問題]]を回避している。自動メモリ管理の[[ガーベジコレクション|ガーベジコレクタ]]の導入も特徴であり堅牢性が重視されている。なお、[[ジェネリックプログラミング]]も採用されており利便性も図られている。 |
|||
;[[Self]] 1987年 |
|||
:メッセージ構文重視のオブジェクト指向言語。動的型付けを重視した言語であり、予め用意されたオブジェクトを複製して任意の拡張を施す[[プロトタイプベース]]の仕組みを初めて実装した。Smalltalkと同様に専用のランタイム環境で実行されたが、これも実用面では初となる[[実行時コンパイラ]](''just-in-time compiler'')の機能が備えられて速度面でも画期的なものとなった。 |
|||
;[[CLOS]] 1988年 |
|||
:[[Common Lisp]]にクラスベースのオブジェクト指向を追加したもの。 |
|||
;[[Python]] 1994年 |
|||
:[[プロトタイプベース]]と[[クラスベース]]の双方を兼ねたオブジェクト指向スクリプト言語。[[インタプリタ]]式で動作する。動的型付けを重視している。従来の型宣言制約を緩めた[[ダイナミックバインディング|動的バインディング]]の柔軟性が扱いやすく奥の深いオブジェクト指向プログラミングを実現している。言語仕様が比較的簡素化され、[[ガベージコレクション|ガーベジコレクション]]も実装されており高い堅牢性を持つ。[[リフレクション (情報工学)|リフレクション]]に相当するクラスと関数のメタデータ・カスタマイズは利便性に加えて保守性をも向上させた。後のオブジェクト指向スクリプト言語の手本になり、2019年現在ではJavaを凌ぐ人気を博すようになった。 |
|||
;[[Java]] 1995年 |
|||
:[[C++]]をモデルにしつつ堅牢性とセキュリティを重視したクラスベースのオブジェクト指向言語。その二つの理念を実現するために、静的型付けの重視、[[仮想マシン]]上の実行、[[ガーベジコレクション]]、[[サンドボックス (セキュリティ)|サンドボックスモデル]]、[[例外処理]]などを採用し、ポインタ、多重継承、ジェネリックプログラミング、[[演算子オーバーロード]]などを破棄した。アップデートに伴い[[リフレクション (情報工学)|リフレクション]]、[[分散システム|分散オブジェクト]]、コレクション用[[ジェネリックプログラミング|ジェネリクス]]、[[並行処理]]、[[関数型プログラミング]]など様々なパラダイムも追加されている。非常に整えられたハイブリッド言語である。 |
|||
;[[Delphi]] 1995年 |
|||
:[[Object Pascal]]を発展させたもので、データベースの操作プログラム開発などを主な用途とした。一時期Javaの対抗馬になった。 |
|||
;[[Ruby]] 1995年 |
|||
:[[Python]]を意識して開発されたオブジェクト指向スクリプト言語。日本で誕生してグローバル化したプログラミング言語である。動的型付けを重視している。[[Mixin|ミックスイン]]の採用が特徴である。 |
|||
;[[JavaScript]] 1996年 |
|||
:[[ウェブアプリケーション|WEBアプリケーション]]開発を主な目的にしていたオブジェクト指向スクリプト言語。[[Smalltalk]]の思想を受け継いでデザインされた[[プロトタイプベース]]の導入は、オブジェクトのカスタマイズを明快かつ有用にして画期的なプログラミング環境を実現した。同様の思想に基づいて[[動的な型付け|動的型付け]]を本命にし[[静的型付け]]が放棄されている。様々に応用可能な[[ダイナミックバインディング|動的バインディング]]機能は平易で柔軟なデザインパターンを促進している。2019年現在ではPython、Javaと並んでOOP御三家に位置付けられている。[[ECMAScript]]として標準化されている。ECMAScript 2015では[[クラスベース]]向けの構文もサポートするようになった。 |
|||
;[[C Sharp|C#]] 2000年 |
|||
:[[Java]]を強く意識してマイクロソフト社が開発したクラスベースのオブジェクト指向言語。[[.NET Framework]]などの[[共通言語基盤]]上で実行される。言語仕様面で数々の野心的な拡張が施されており、高度なコーディングスタイルを実現している。静的型付けを重視しつつ動的型付けの比重も高めて4.0から漸進的型付けが採用された。こちらもよく整えられたマルチパラダイム言語として知られる。 |
|||
;[[Scala]] 2003年 |
|||
:クラスベースのオブジェクト指向と関数型プログラミングを連携させた言語。オブジェクトは関数の引数または返値として扱われる対象データ存在になるだけでなく、オブジェクトにもラムダ計算的解釈が適用できるので主体的な評価式存在にもなれる。関数、オブジェクト、オブジェクトメソッドの三者にそれぞれ高階関数、第一級関数、評価式の役割を自在に演じさせてモナド的な関数連鎖を織りなす柔軟なプログラミングが可能である。結果的に関数型と抽象データ型の親和性を世に証明する言語になった。 |
|||
;[[Kotlin]] 2011年 |
|||
:[[Javaバイトコード]]を出力し、[[Java仮想マシン]]上で動作するJavaテクノロジー互換言語である。グローバル関数、グローバル変数の使用も容認されており、オブジェクト指向プログラミングを手続き型プログラミングのスタイルに崩したかのようにデザインされている。 |
|||
;[[TypeScript]] 2012年 |
|||
:[[JavaScript]]を強く意識してマイクロソフト社が開発したオブジェクト指向スクリプト言語。Typeの名は、静的型付けを再び取り上げて動的型付けと合わせて活用するための漸進的型付けの提唱に因んでいるようである。 |
|||
;[[Swift (プログラミング言語)|Swift]] 2014年 |
|||
:最新スタイルのマルチパラダイムプログラミング言語。オブジェクト指向はクラスベースで静的型付け重視である。 |
|||
クラスを使用するOOPを[[クラスベース]]・プログラミングと呼ぶことがあるが、[[プロトタイプベース]]・プログラミングではクラスを使用しないのが一般的である。そのため、'''オブジェクト'''と'''インスタンス'''という概念の定義は、それぞれで大きく異なるが類似した用語が用いられている。 |
|||
== 用語と解説 == |
|||
=== クラス === |
|||
{{main|クラス (コンピュータ)}} |
|||
==== クラスベース ==== |
|||
{{main|クラスベース}} |
|||
'''クラス''' (class) は大多数のオブジェクト指向プログラミング言語で提供されている仕組みであり、上記の機能のほとんど全てに関わりがある。概念的にはクラスはオブジェクトの種類を表す。このためオブジェクトはクラスに'''属する'''という言い方をする。あるクラスに属するオブジェクトのことをそのクラスの'''インスタンス''' (instance) と呼ぶ。[[データ型]]の理論から見た場合クラスは型を定義する手段の一つである。クラスによってオブジェクトを記述する言語を'''[[クラスベース]]''' ({{Lang|en|class-based}}) のオブジェクト指向プログラミング言語と呼ぶ。 |
|||
言語によっては、[[トレイト]]や[[mixin]]のような概念を用いてクラスやオブジェクトを構成することが可能である。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
ハイブリッド型オブジェクト指向プログラミング言語では在来の[[データ型#レコード型|レコード型]](Cでは[[構造体]])の構文を拡張してクラスの定義を行うようにしたものが多い。 |
|||
=== クラスベース対プロトタイプベース === |
|||
多くのオブジェクト指向プログラミング言語ではクラスを'''[[#データ・メンバ|データメンバ]]'''と'''[[#メソッド|メソッド]]'''の集まりとして記述する。平たく言えばデータ・メンバの集まりはオブジェクトが保持するデータの形式を定め、各メソッドはそれぞれオブジェクトが処理する特定のメッセージの処理方法を定める。しばしばデータ・メンバとメソッドには個別に[[オブジェクト指向プログラミング#アクセス権|アクセス権]]が設定できるようになっていて、そのクラスに属するオブジェクトが内部的に利用するものと他のクラスに属するオブジェクトに公開するものを分類できるようになっている。多くの場合、公開されたメソッドの集まりは全体として処理可能なメッセージのカタログの機能、即ち[[インタフェース (情報技術)|インタフェース]]を提供する。各言語によって異なるが特定の名前のメソッドを定めて、オブジェクトの生成や初期化時の処理、廃棄時の処理などを記述できるようにすることも多い。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->[[クラスベース|クラスベースの言語]]では、予め''クラス''が定義され、そのクラスに基づいて''オブジェクト''がインスタンス化される。例えば、''apple''と''orange''という2つのオブジェクトが、''Fruit''というクラスからインスタンス化された場合、それらは本質的には果物であり、同じように取り扱えることの保証がされる。 |
|||
[[プロトタイプベース|プロトタイプベースの言語]]では、''オブジェクト''が主要な実体である。''クラス''は存在しない。オブジェクトの''プロトタイプ''とは、あるオブジェクトからリンクされている別のオブジェクトに過ぎない。すべてのオブジェクトは一つの''プロトタイプ''リンクを持つ (一つのみ)。新しいオブジェクトは、プロトタイプとして選ばれた既存のオブジェクトに基づいて作成することができる。''fruit''オブジェクトが存在し、''apple''と''orange''の両方が''fruit''をプロトタイプとしている場合、2つの異なるオブジェクト''apple''と''orange''を果物と考えることができる。''fruit''「クラス」という概念は明示的には存在しないが、同じプロトタイプを共有するオブジェクトの[[同値類|同値クラス]]としては存在する。''プロトタイプ''の属性やメソッドは、このプロトタイプで定義された同値クラスのすべてのオブジェクトから[[委譲]]先とされる。オブジェクト固有の属性やメソッドは、同値クラスの他のオブジェクトに共有されない場合がある。例えば、属性''sugar_content''は''apple''には予期せず存在しない場合がある。プロトタイプで実装できるのは[[:en:Multiple_inheritance#Single_inheritance|単一継承]]のみである。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
多くの言語でクラスは言語の要素として直接実現されているが、これは実行効率のためであり、そのように実現することが必須というわけではない。実際、各クラスをそれぞれオブジェクトとして提供する言語も存在する(例:[[Smalltalk]])。このような言語ではある種の'''[[リフレクション (情報工学)|リフレクション]]''' (reflection) が可能となる。即ち必要があればプログラムで実行時にクラスの動作を変更することが可能である。これは非常に大きな柔軟性を提供するが、[[処理系|言語処理系]]による最適化が難しいため実行効率は低下することが多い。{{いつ範囲|date=2019年2月|近年}}では柔軟性と効率性を両立させるために基本的に言語要素としてクラスを提供した上で、リフレクション機能が必要なプログラムに対しては必要に応じて各クラスに対応するクラス・オブジェクトをプログラムが獲得できるようにしている言語が現れてきている。(例:JavaのリフレクションAPI) |
|||
=== 動的ディスパッチとメッセージパッシング === |
|||
==== プロトタイプベース ==== |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
{{main|プロトタイプベース}} |
|||
メソッドの呼び出しに応じて実行する手続きのコードを選択するのは、外在するコードではなく、オブジェクトの責任である。典型的には、オブジェクトに関連付けられたテーブルから実行時にメソッドを検索するが、この機能は[[:en:Dynamic dispatch|動的ディスパッチ]]として知られており、[[抽象データ型]] (またはモジュール)において、すべてのインスタンスの操作が静的に実装されているのとは対照的である。呼び出しの変化が、呼び出されたオブジェクトの単一の型にのみには依らない場合 (つまり複数のオブジェクトがメソッド選択に関与する場合)、[[多重ディスパッチ]]と呼ばれる。 |
|||
クラスは非常に多くのオブジェクト指向プログラミング言語で提供されている機能ではあるが、オブジェクト指向プログラミング言語に必須の機能というわけではない。実際にオブジェクトの管理や、データ・メンバや[[メソッド (計算機科学)|メソッド]]の記述、[[継承 (プログラミング)|継承]]に際してクラスという仕組みに依存せずに、もしくはクラスという仕組み自体を持たずに別の手段でこれらを実現している言語も存在する。このような言語を'''[[プロトタイプベース|インスタンスベース]]''' (''{{Lang|en|instance-based}}'')、'''オブジェクトベース''' (''object-based'') あるいは'''プロトタイプベース''' (''{{Lang|en|prototype-based}}'') のオブジェクト指向プログラミング言語と呼ぶ。インスタンスベースまたはそれに類するオブジェクト指向プログラミング言語には以下のようなものがある: |
|||
メソッド呼び出しは、[[メッセージ (コンピュータ)|メッセージパッシング]]とも呼ばれる。これは、メソッド呼び出しを、ディスパッチのためにオブジェクトに渡されるメッセージ (メソッドの名前とその入力引数)として概念化したものである。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
*[[Self]] |
|||
*[[JavaScript]] |
|||
*[[NewtonScript]] |
|||
*[[ドリトル (プログラミング言語)|ドリトル]] |
|||
* Squeak [[Etoys|eToys]]([[Squeak]]の非開発者向けビジュアルスクリプト言語。SqueakToys とも) |
|||
=== カプセル化 === |
|||
なお、クラスベースの言語とインスタンス・ベースの言語との間には明確な境界線はない。たとえば、インスタンス・ベースの代表格ともいえる Self には、traits と呼ばれるクラスのような仕組みが追加されているし、JavaScript、NewtonScript に至っては traits 類似の仕組みを「クラス」と呼称している。また逆に、クラスベースの言語でもクローンを行うメソッドを備え、委譲の仕組みを記述すればある程度はインスタンス・ベースのスタイルでプログラムを記述できる。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->[[カプセル化]]とは、オブジェクト指向プログラミングにおいて、データとそのデータを操作する関数を結び付け、両者を外部からの干渉や誤用から守ることである。データのカプセル化は、OOPの重要な概念である{{仮リンク|情報隠蔽|en|Information hiding|redirect=1}}にも通じる。 |
|||
クラスがメソッドを通じてのみオブジェクトの内部データへのアクセスを許可し、それ以外の呼び出しコードにアクセスを許可しない場合、これはカプセル化として知られる強力な抽象化、または情報隠蔽の形態である。いくつかの言語 (Javaなど)では、クラスがアクセス制限を明示的に行うことができる。例えば、内部データであることを<code>private</code>というキーワードで指定し、クラス外のコードが使用することを意図したメソッドを<code>public</code>というキーワードで指定することができる。また、メソッドはpublic、private、または<code>protected</code> (同クラスとそのサブクラスからのアクセスは許可するが、異なるクラスのオブジェクトからのアクセスは許可しない)のように中間のアクセスレベルとすることもできる。また他の言語 (Pythonなど)では、アクセス制限は、命名法などの慣例によってのみ強制される (例えば、<code>private</code>のメソッドは[[アンダースコア]]で始まる名前を持つ、など)。カプセル化することで、外部のコードがオブジェクトの内部動作に関与してしまうことを防ぐことができ、[[リファクタリング (プログラミング)|リファクタリング]]を容易にする。例えば、クラスの設計者は、外部のコードは変更することなく、そのクラスのオブジェクト内部のデータ表現を変更することができる (公開されているメソッドの呼び出しが同じように動作する限りにおいて)。また、特定のデータに関連するすべてのコードを同じクラスに配置することで、他のプログラマが理解しやすいように整理することもできる。カプセル化は、[[結合度|疎結合]]を促進する技術である。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
インスタンス・ベースの言語ではオブジェクトの生成は既存のオブジェクト、特に'''プロトタイプ'''({{Lang|en|prototype}}、原型)と呼ばれるオブジェクトからのクローンによって行われる。当然、一群のクローンはその親、ひいてはプロトタイプと同一の種類のオブジェクトと見なされる。メソッドはプロトタイプ・オブジェクトに属し、メッセージは委譲によってそのオブジェクトが覚えているコピー元へ向かってプロトタイプまで順にメッセージが中継されてから処理される。新しい種類のオブジェクトが必要な場合は適当なオブジェクトをクローンした後で必要なデータ・メンバやメソッドを追加あるいは削除し新たなプロトタイプとすることで行われる。追加されたのでないメソッドに対応するメッセージについてはコピー元のオブジェクトに処理を委譲する。 |
|||
=== コンポジション、継承、委譲 === |
|||
クラスベースの言語との関係について考えてみると、クローンはプロトタイプと同一の「クラス」に属すると見なし、データ・メンバやメソッドが追加・削除されてあらたなプロトタイプが作られると別の「クラス」が内部的に生成されると考えることができる。ここでデータ・メンバやメソッドの追加のみを許して削除を許さないよう制限すればクローンの「クラス」がその親の「クラス」を継承した場合と同等になる。このためメッセージが委譲の連鎖をたどって配送されるという効率上の問題を無視すれば理論上、インスタンス・ベースの言語の記述能力はクラス・ベースの言語を包含していると言える。ただ、インスタンス・ベースの言語でも実行効率上の問題からなんらかのクラスに似た仕組みを備えている場合が多い。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->オブジェクトは、そのインスタンス変数に他のオブジェクトを含めることができ、これを[[:en:object composition|オブジェクトコンポジション]]と呼ぶ。例えば、"従業員"クラスのオブジェクトは、"名前" や "役職"といった自身のインスタンス変数に加えて、"住所"クラスのオブジェクトを (直接またはポインタを介して)含むことができる。 |
|||
オブジェクトコンポジションは、"has-a" の関係を表現するために使用できる。例えば、すべての従業員は住所を持っているので、すべての"従業員"オブジェクトは、"住所"オブジェクトを格納する場所 (オブジェクトに直接埋め込まれていることも、ポインターで指定された別の場所に格納されることもある)にアクセスできる。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->クラスをサポートする言語は、大抵は[[継承 (プログラミング)|継承]]をサポートしている。継承とは、クラスを「○○は△△である」という関係("is-a-type-of")の階層に配置することであるが、例えば、<code>Employee</code> クラスは <code>Person</code> クラスを継承する場合、親クラスで利用できるデータやメソッドは、子クラスでも同じ名前で利用可能である。また、<code>Person</code> クラスは、<code>first_name</code> と <code>last_name</code> という変数を <code>make_full_name()</code> というメソッドで定義した場合、これらの定義は<code>Employee</code>クラスでも利用可能である。加えて、<code>Employee</code>クラスには変数 <code>position</code> と <code>salary</code> を追加することもできる。この手法では、同じ手続きやデータ定義を簡単に再利用できるだけでなく、現実世界の関係を直感的に反映できる可能性を広げる。開発者は、データベースのテーブルやプログラミングのサブルーチンを扱うのではなく、開発アプリケーションのユーザーがより精通しているドメインのオブジェクトを扱うことができる<ref>{{cite book|last=Jacobsen|first=Ivar|title=Object Oriented Software Engineering|year=1992|publisher=Addison-Wesley ACM Press|isbn=978-0-201-54435-0|pages=[https://archive.org/details/objectorientedso00jaco/page/43 43–69]|author2=Magnus Christerson|author3=Patrik Jonsson|author4=Gunnar Overgaard|url=https://archive.org/details/objectorientedso00jaco/page/43}}</ref>。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
==== データメンバ ==== |
|||
'''データメンバ''' ({{Lang|en|data member}}) は、他のオブジェクトに対する[[参照 (情報工学)|参照]]や[[ポインタ (プログラミング)|ポインタ]]であるか、他のオブジェクトそのものである。参照かポインタである場合にはそのデータメンバの参照するのはデータメンバが記述されているクラスそのもののインスタンスに対する参照であっても良い。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->サブクラスはスーパークラスで定義されたメソッドをオーバーライドできる。言語よっては[[:en:Multiple inheritance|多重継承]]が可能だが、多重継承ではオーバーライドの解決は複雑になる可能性がある。また、言語によっては[[mixin]]を特別にサポートしているものもあるが、多重継承をサポートする言語では、mixinは単に ''is-a-type-of'' の関係を表すことのないクラスの一つである。mixinは典型的には、同一のメソッドを複数のクラスに追加するために使われる。例えば、共通の親クラスを持たない<code>FileReader</code>クラスと<code>WebPageScraper</code>クラスに、<code>unicode_to_ascii()</code>というメソッドを持つ<code>UnicodeConversionMixin</code>クラスを含ませる(mixinする)ことにより共通のメソッドを提供することができる。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
一般にデータメンバは'''インスタンスデータメンバ'''('''[[インスタンス変数|インスタンスフィールド]]''')と'''クラスデータメンバ'''('''静的変数''')の2種類に大別できる。効率上の観点から言語が提供する基本オブジェクトの定数を表すデータメンバは特別扱いされる。そのような定数を表すデータメンバを特に'''定数データメンバ''' ({{Lang|en|constant data member}}) と呼ぶ。データメンバは[[C++]]などの言語では'''メンバ変数''' ({{Lang|en|member variable}})、[[Java]]などでは'''フィールド'''と呼ばれることがあり、[[統一モデリング言語|UML]]では[[属性]]と呼ばれる。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1055370410 の翻訳 -->[[抽象型|抽象クラス]]は、オブジェクトへインスタンス化することはできない。インスタンス化できる他の具象クラスが継承するためにのみ存在する。Javaでは、<code>[[final (Java)|final]]</code>キーワードを用いて、クラスがサブクラス化されるのを防止できる。 |
|||
'''インスタンスデータメンバ'''{{main|インスタンス変数}} |
|||
インスタンスデータメンバ(一般に単にデータメンバと言われる場合はこちら)はそのクラスのインスタンス各々に保持される。インスタンスデータメンバの集まりはそのクラスのインスタンスが保持するデータの形式を定める。インスタンスデータメンバは単にデータメンバと呼ばれることも多い。 |
|||
[[:en:Composition over inheritance|Composition over inheritance]]の方針は、継承の代わりに合成を使って has-a 関係を実装することを提唱している。例えば、EmployeeクラスはPersonクラスを継承する代わりに、各Employeeオブジェクトの内部にPersonオブジェクトを含めることで、仮にPersonクラスが公開された属性やメソッドを多数持っていても、外部のコードからは隠せるようにする。また、[[Go (プログラミング言語)|Go]]のように、継承を全くサポートしていない言語も存在する。 |
|||
[[Smalltalk]]では'''[[インスタンス変数]]''' ({{Lang|en|instance variable}}) と呼ばれる。 |
|||
[[開放/閉鎖原則]]は、クラスやメソッドは「拡張に対しては開放的であるが、変更に対しては閉鎖的であるべき」という原則を提唱している。 |
|||
==== クラスデータメンバ ==== |
|||
{{main|クラス変数}} |
|||
クラスデータメンバはそのクラスオブジェクトとインスタンスオブジェクトの間で共有されるデータである。 |
|||
[[委譲]]もまた、継承の代わりに利用できる言語機能である。<!-- ここまで [[en:Object-oriented programming]] oldid=1055370410 の翻訳 --> |
|||
[[Smalltalk]]ではクラスデータメンバは'''[[クラス変数]]''' ({{Lang|en|class variable}}) と呼ばれる。また、[[C++]]・[[Java]]では歴史的事情によりクラスデータメンバは'''静的データメンバ''' ({{Lang|en|static data member}})、'''静的変数''' (static variable)、'''静的フィールド''' ({{Lang|en|static field}}) と呼ばれる。ただし、Smalltalkのクラス変数はC++やJavaのクラス変数とは異なる。Smalltalkにおいて、C++やJavaのクラス変数と同等となる変数は'''プール辞書''' ({{Lang|en|pool dictionary}}) と呼ばれる。 |
|||
=== ポリモーフィズム === |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 -->[[サブタイピング (計算機科学)|サブタイピング]] ([[ポリモーフィズム]]の一形態)では、呼び出すコードが、サポートされている階層のどのクラスを操作しているのか (親クラスなのかその子孫なのか)という詳細には関知しないことが可能である。一方、継承階層内のオブジェクト間では、同じ操作名でも挙動が異なる場合がある。 |
|||
'''[[メソッド (計算機科学)|メソッド]]''' ({{Lang|en|method}}) は特定の種類のメッセージの処理方法を記述したものである。メソッドも[[メソッド (計算機科学)#インスタンスメソッド|インスタンス・メソッド]]と[[メソッド (計算機科学)#静的メソッド|クラス・メソッド]]の2種にできる。インスタンス・メソッドはそのクラスの各インスタンスオブジェクトを操作し、クラス・メソッドはクラスオブジェクトを操作する。メソッドとの集まりはそのクラスのオブジェクトが処理可能なメッセージのカタログの機能を果たす。 |
|||
例えば、Circle型とSquare型のオブジェクトが、Shapeという共通のクラスから派生している場合、Shapeの各型のDraw関数は、それぞれの描画に必要な機能を実装しているが、呼び出しのコードは、描画されるShapeが特定の型であるかどうかには無関心でいられる。 |
|||
一例として、[[C++]]では、メソッドは'''メンバ関数''' ({{Lang|en|member function}}) や'''関数メンバ''' (function member) と呼ばれる。これはC++が[[グローバル関数]]との区別をつけることと、クラスを[[抽象データ型]]の拡張と位置づけ、非メッセージメタファな言語思想を持っているためである。これら言語ではメソッドをオブジェクト(=クラスやインスタンス)の持ち物として捉えず、クラスに定義された機能要素であると考える。メッセージメタファを否定するため、同時にメッセージを実行するメソッド(手法)ではありえない。 |
|||
これもまた、クラス階層からコードを引き離して単純化し、強力な[[関心の分離]]を可能にする抽象化の一種である。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
==== クラスメソッド ==== |
|||
[[メソッド (計算機科学)#静的メソッド|クラス・メソッド]]だが、オブジェクト指向の本義に立ち返れば、クラス・メソッドがあるということはクラスがメッセージをレシーブできるという事になる。クラスがメソッドを持つことは便利だが、クラスをオブジェクトとすると実行効率に劣るため、双方の利点を享受できるこのような折中的仕様を取る言語は多い。 |
|||
=== オープンな再帰 === <!-- ここから [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
C++ではクラスはオブジェクトでは無いが、一方でクラスに属するメソッドは存在する。[[Eiffel]]ではクラスはオブジェクトでは無いためクラスのメソッドであるクラス・メソッドは存在しない。[[Smalltalk]]ではクラスもオブジェクトの一種であるため当然クラスはメソッドをもつ。 |
|||
[[:en:This_(computer_programming)#Open_recursion|オープンな再帰]]<ref>{{Cite book|和書|title=型システム入門 |publisher=オーム社 |year=2013 |page=185}} 18.10 selfを介したオープンな再帰</ref>をサポートする言語では、オブジェクトのメソッドは同じオブジェクト上の他のメソッドや自分自身を呼び出すことができる。通常は<code>this</code>や<code>self</code>と呼ばれる特別な変数やキーワードを使用して呼び出しをするのが一般的であるが、この変数は「[[束縛_(コンピュータ)#名前束縛|遅延結合]]」であり、あるクラスで定義されたメソッドが、そのサブクラスで後から定義された別のメソッドを呼び出すことができる。<!-- ここまで [[en:Object-oriented programming]] oldid=1051733225 の翻訳 --> |
|||
== デザインパターン == |
|||
クラス・メソッドは、C++では'''静的メンバ関数''' ({{Lang|en|static member function}}) と呼ばれる。これはクラスがオブジェクトでない言語にとってはクラス・メソッドより正確な表現であり適切である。("static" とはCの'''static変数'''に由来し'''auto変数'''の対語である。関数コールによりスタック上に生成される関数インスタンスに依存しない変数と、インスタンス生成有無にかかわらず実行できる関数の類似による。)Javaではクラス・メソッドは'''静的メソッド''' ({{Lang|en|static method}}) とも呼ばれることもある。 |
|||
=== 継承とBehavioral subtyping === |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1057169575 の翻訳 -->継承は[[プログラム意味論|意味論]]的には [[is-a]] の関係を作るため、サブクラスからインスタンス化されたオブジェクトは、スーパークラスからインスタンス化されたオブジェクトの代わりに、常に''安全に''使用できる、と推測するのは直感的ではあるが、この直観は、ほとんどのOOPL、特に[[イミュータブル|ミュータブル]]なオブジェクトを許可している言語では誤りである。 (ミュータブルなオブジェクトを持つ)OOPLの型検査器によって強制される[[ポリモーフィズム|部分型付け (部分型多相/サブタイピング多相)]]では、いかなる状況でも、振る舞いにおける部分型付け ([[:en:Behavioral subtyping|Behavioral subtyping]]) は保証することはできない。 Behavioral subtyping は一般に決定不能であり、プログラム (コンパイラ)では実装できない。クラスやオブジェクトの階層は、文法間違いでは検出できない使い方がされる可能性を考慮に入れて、慎重に設計する必要がある。この問題は[[リスコフの置換原則]]としても知られている。<!-- ここまで [[en:Object-oriented programming]] oldid=1057169575 の翻訳 --> |
|||
初期化に利用されるメソッドを'''[[コンストラクタ]]'''あるいは'''構築子''' ({{Lang|en|constructor}})、廃棄時に利用されるメソッドを'''[[デストラクタ]]'''と呼んで特別に扱うことが多い。コンストラクタが初期化だけを担う場合はイニシャライザあるいは初期化子 ({{Lang|en|initializer}}) と呼ばれることもある。Javaはオブジェクトの寿命管理に[[ガベージコレクション]]を用いるため、デストラクタをサポートしない。ただし、オブジェクトがガベージコレクションによって破棄されるときに呼び出される'''[[ファイナライザ]]''' ({{Lang|en|finalizer}}) をサポートし、{{Javadoc:SE|name=Object#finalize()|java/lang|Object|finalize()}}メソッドがその役割を果たす。ただし、ファイナライザはC++のデストラクタと違ってユーザーコードで明示的に呼び出すことはできない。ファイナライザが呼び出されるタイミングをプログラマが制御することはできず、最終防壁(フェイルセーフ)としての役割しか持たないため、Javaにおけるファイナライザは本当に必要でない限り使用するべきではない。C#もファイナライザをサポートする(構文はC++のデストラクタに似ており、かつてはデストラクタと呼ばれていたが、役割はJavaのファイナライザと同じである)。 |
|||
=== GoFデザインパターン === |
|||
[[データ型]]の理論においては保持されるデータが必ずその型で認められる正しい値の範囲に収まることを保証するため、生成されるオブジェクトのデータ・メンバが必ず適切なコンストラクタによって初期化されるように求める。またオブジェクトが入出力機器や[[ファイル (コンピュータ)|ファイル]]や通信、[[プロセス]]や[[スレッド (コンピュータ)|スレッド]]、[[ウィンドウ]]と[[ウィジェット (GUI)|ウィジェット]]など[[ハードウェア]]や[[オペレーティングシステム]] (OS) が提供する資源を管理するために利用される場合に、コンストラクタやデストラクタでそれらの資源の使用開始(オープン処理)や使用終了(クローズ処理)をそれぞれ管理し、通常のメソッドでそれらにまつわる各種サービスを提供するようにすることで、それらのリソースがあたかもプログラム中のオブジェクトであるかのように自然に取り扱うことができるようになる([[RAII]])。 |
|||
{{Main|デザインパターン (ソフトウェア)}} |
|||
=== オブジェクト指向とデータベース === |
|||
C++やJavaなどでは、コンストラクタはクラスと同じ名前を持ち、戻り値を持たないメソッドとして定義される。C++では一部のコンストラクタは[[型変換演算子]]として、また[[暗黙の型変換]]にも利用される。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1057169575 の翻訳 --> |
|||
{{Main|[[インピーダンスミスマッチ|オブジェクト-リレーションインピーダンスミスマッチ]]|オブジェクト関係マッピング|オブジェクトデータベース}} |
|||
OOPL と[[関係データベース管理システム]] (RDBMS) は、どちらも{{As of|2021|alt=今日}}のソフトウェアとして非常に一般的であるが、双方を接続する場合、[[関係データベース]]は、オブジェクトを直接格納しないため (ただし、今日ではこれに近しい拡張機能を持つ RDBMS も存在する)、この二つの世界を橋渡しすることが一般的な需要として擡頭した。アクセス方法やデータパターンを OOPL と RDB との間で橋渡しする際の問題は、オブジェクト-リレーションの[[インピーダンスミスマッチ]]と呼ばれている。 |
|||
==== メタクラス ==== |
|||
この問題に対処するためのアプローチはいくつかある。欠点のない一般的な解決策といえるものはない<ref name="RDMDBobjectmis">{{Cite web| first = Ted| last = Neward| title = The Vietnam of Computer Science| date = 26 June 2006| access-date = 2 June 2010| publisher = Interoperability Happens| url = http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx| archive-url = https://web.archive.org/web/20060704030226/http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx| archive-date = 4 July 2006| url-status = dead| df = dmy-all}}</ref>が、代表的なものとして、[[オブジェクト関係マッピング]](ORM)があり、[[Microsoft Visual FoxPro|Visual FoxPro]]などの[[統合開発環境|IDE]]言語や、Java Data Objects、[[Ruby on Rails]]の[[Active Record]]などのライブラリが存在する。 |
|||
動的型付けを採用するオブジェクト指向言語の多くは、クラスより生成するインスタンスの他に[[メタクラス]]という機能を持ちクラス自体をオブジェクトとして扱うことが出来る。このためオブジェクトには、インスタンスオブジェクトとクラスオブジェクトという2種類のオブジェクトが存在する。Java等クラスオブジェクトを持たない言語の文化圏では、インスタンスオブジェクトとオブジェクトを混同して説明される事があるが、Objective-CやPython、Ruby等、インスタンスオブジェクトとクラスオブジェクトが別であるオブジェクト指向言語では区別して説明される。<ref>Objective-Cプログラミ |
|||
ング言語[https://developer.apple.com/jp/devcenter/ios/library/documentation/ObjC.pdf]</ref> |
|||
<ref>Classes ― Python v2.7.3 documentation[http://docs.python.org/2/tutorial/classes.html]</ref> |
|||
<ref>クラス/メソッドの定義 (Ruby manual) [http://www.ruby-lang.org/ja/old-man/html/_A5AFA5E9A5B9A1BFA5E1A5BDA5C3A5C9A4CEC4EAB5C1.html]</ref>元々はSmalltalkから始まった用語である。 |
|||
また、RDBMS を代替する[[オブジェクトデータベース]]も存在するが、技術的にも商業的にも RDBMS ほど広く成功は収めていない。<!-- ここまで [[en:Object-oriented programming]] oldid=1057169575 の翻訳 --> |
|||
==== thisインスタンス ==== |
|||
{{seealso|this (プログラミング)}} |
|||
そしてあるオブジェクトOにメッセージを配送し適切なメッセージ処理コード(振る舞い)を呼び出す際には、まず対象となるオブジェクトOについて共通部分の格納場所を見つけて適切なコードを選び出し、次にそのコードに対して処理対象となるオブジェクトO固有のデータの所在を示す'''オブジェクトID'''を渡すようになっている。 |
|||
=== OOPと制御構造 === |
|||
各オブジェクトの固有データを識別するオブジェクトIDを表現する方法も様々で、オブジェクトのIDとしては名前、番号なども用いられることがあるが、オブジェクトの固有データを記憶している[[主記憶]]上の[[メモリアドレス|アドレス]]がそのまま用いられることもある。アドレスを直接利用することは非常に実行効率の向上に寄与するが、プログラム間でのオブジェクトの受け渡し、セッション間(プログラムが終了して再度起動された時など)でのオブジェクトの受け渡しにはそのまま利用することができない。また各オブジェクトの固有データから共通部分の格納場所を見つける方法もまた各言語により異なり、その言語の開発目的に応じて実に多種多様である。 |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1055370410 の翻訳 -->OOPは、ソースコードの[[コードの再利用|コードの再利用性]]や[[ソフトウェア保守|ソフトウェアの保守性]]を高めるよう発展してきたが<ref name="realisticcodereuse">{{Cite web| first = Scott| last= Ambler| title = A Realistic Look at Object-Oriented Reuse| date=1 January 1998| access-date=4 July 2010| publisher = drdobbs.com| url=http://www.drdobbs.com/184415594}}</ref> 、ある時期までは[[制御構造|制御フロー]]の透過的な表現については、あまり省みられることもなく、コンパイラが任意に処理すれば良いと考えられてきた。しかし、OOPでの実現にはある種の困難を伴うものの、並列ハードウェアや[[スレッド (コンピュータ)|マルチスレッドコーディング]]の重要性が増すにつれ透過的な制御フローの開発は重要になってきている<ref name="flaws">{{Cite web| first = Asaf| last= Shelly |title = Flaws of Object Oriented Modeling| date=22 August 2008|access-date=4 July 2010| publisher = Intel Software Network| url=http://software.intel.com/en-us/blogs/2008/08/22/flaws-of-object-oriented-modeling/}}</ref><ref name="multithreadingisaverb">{{Cite web| first = Justin| last = James| title = Multithreading is a verb not a noun| date = 1 October 2007| access-date = 4 July 2010| publisher = techrepublic.com| url = http://blogs.techrepublic.com.com/programming-and-development/?p=518| archive-url = https://web.archive.org/web/20071010105117/http://blogs.techrepublic.com.com/programming-and-development/?p=518| archive-date = 10 October 2007| url-status = dead| df = dmy-all}}</ref><ref name="multicore">{{Cite web| first = Asaf| last= Shelly| title = HOW TO: Multicore Programming (Multiprocessing) Visual C++ Class Design Guidelines, Member Functions| date=22 August 2008| access-date=4 July 2010| publisher = support.microsoft.com| url=http://support.microsoft.com/?scid=kb%3Ben-us%3B558117}}</ref><ref>{{cite web|url=http://existentialtype.wordpress.com/2011/04/17/some-advice-on-teaching-fp/|title=Some thoughts on teaching FP|author=Robert Harper |publisher=Existential Type Blog|access-date=5 December 2011|date=17 April 2011|author-link=Robert Harper (computer scientist)}}</ref>。<!-- ここまで [[en:Object-oriented programming]] oldid=1055370410 の翻訳 --> |
|||
=== 責任駆動設計 対 データ駆動設計 === |
|||
<!-- ここから [[en:Object-oriented programming]] oldid=1057169575 の翻訳 -->[[:en:Responsibility-driven design|責任駆動設計]]では、クラスは、共有する情報とそれを扱う責務という観点から定義されるべきであるとし、クラス定義 (とその利用者)の契約として設計する。Wirfs-BrockとWilkersonは、責任駆動設計と対比して、[[:en:Data-driven programming|データ駆動設計]]は、クラスが保持すべきデータ構造のみを中心に定義されるとし、責任駆動型の設計が望ましいとしている<ref name="Wirfs-Brock1989">{{cite journal|last1=Wirfs-Brock|first1=Rebecca|last2=Wilkerson|first2=Brian|title=Object-Oriented Design: A Responsibility-Driven Approach|journal=ACM SIGPLAN Notices|date=1989|volume=24|issue=10|page=74|doi=10.1145/74878.74885}}</ref>。<!-- ここまで [[en:Object-oriented programming]] oldid=1057169575 の翻訳 --> |
|||
オブジェクト指向プログラミングにおいて、[[オブジェクト (プログラミング)|オブジェクト]]は、[[カプセル化]]されておりブラックボックスである。したがって、処理するメッセージのカタログ、つまりインタフェースだけが利用者に公開され、内部の詳細は隠されるのが基本である。しかし、あるクラスのインスタンスの内部だけで利用されるメソッドまで公開してしまうと、利用者にとって煩雑である。また、定数データ・メンバのようなものは一々メソッドでアクセスするようにせず公開してしまっても、カプセル化の利点は失われず効率的でもある。そこで、オブジェクトを定義するプログラマが各データ・メンバやメソッドについて公開・非公開を設定できる機能を用意している言語は多い。 |
|||
=== <!-- 以下、[[en:Object-oriented programming]] oldid=1047374345 の翻訳 -->SOLID、GRASPのガイドライン === |
|||
例えば、Javaでは、データ・メンバやメソッドの宣言にpublicと指定すれば、他オブジェクトから自由に利用でき('''公開'''と呼ばれる)、privateと指定すればオブジェクト内だけで利用できるようになる('''非公開'''と呼ばれる)。しかし、ある機能を提供するのに、一個ではなく一群のクラスに属するオブジェクトでそれを記述するのが相応しい事例がある。そのような場合、関係する一群のオブジェクト間でだけデータ・メンバやメソッドを利用できれば便利である。それを可能にするための拡張がいくつか存在する。例えば、継承を利用しているときに、あるクラスが子孫にだけ利用を許可したいデータ・メンバやメソッドがある場合、Javaではprotectedを指定することでそれを実現できる('''限定公開'''と呼ばれる)。また、ある一群の機能を実現するクラスの[[ライブラリ]]で、その実現に関連するクラスに属するオブジェクトだけがデータ・メンバやメソッド利用できるようにしたい場合も考えられる。また、Javaでは、ライブラリを構成するクラス群を表現する'''[[パッケージ (Java)|パッケージ]]''' ({{Lang|en|package}}) という仕組みがあり、特に指定がない場合は同一パッケージに属するクラスのオブジェクト間でのみデータ・メンバやメソッドを相互に利用可能である。その他にも、[[デザインパターン (ソフトウェア)|デザインパターン]]の一つである[[Facade パターン]]では、この仕組みがテクニックとして応用されている。また、C++ではフレンド宣言という仕組みがあり、あるクラスで外部非公開に指定されているデータ・メンバやメソッドについて、その利用を許可するクラスや関数のリストをクラス内に列挙することができる。なお、public、private、protectedというキーワードは、多くのプログラミング言語で用いられているが、その示す意味は言語ごとに差異があるため、注意が必要である。 |
|||
[[SOLID]]のガイドラインは、プログラミングにおける五つの実践の頭文字をとった語呂合わせであり、マイケル・C・フェザーズ<ref>https://wiki.c2.com/?MichaelFeathers</ref>が考案し提唱したものである |
|||
=== メッセージ === |
|||
* '''S''' : [[:en:Single responsibility principle|単一責任の原則(英語版)]] |
|||
{{seealso|メッセージ転送}}'''メッセージ''' ({{Lang|en|message}}) はオブジェクト間の通信でやりとりされる情報である。メッセージはメッセージ種別を示すIDとメッセージの種別に応じた追加の情報からなる定まった形式を持つ。追加の情報はそれ自身が何らかのオブジェクトや[[オブジェクトのID]]である場合もある。メッセージの配送には大別して2つの方式がある |
|||
* '''O''' : [[開放/閉鎖原則]] |
|||
* '''L''' : [[リスコフの置換原則]] |
|||
* '''I''' : [[:en:Interface segregation principle|インターフェイス分離の原則(英語版)]] |
|||
* '''D''' : [[依存性逆転の原則]] |
|||
[[GRASP]](General Responsibility Assignment Software Patterns)は、[[:en:Craig Larman|クレーグ・ラーマン]]が提唱したもう一つガイドラインである。 |
|||
* 同期式 - オブジェクトがメッセージの送信を依頼すると相手が受信、処理して結果を返すまでそのオブジェクトは処理を中断して待つ。 |
|||
<!-- 以上、[[en:Object-oriented programming]] oldid=1047374345 の翻訳 --> |
|||
* 非同期式 - オブジェクトがメッセージの送信を依頼した後、相手の応答を待たずにオブジェクトは処理を続行する。処理結果は別のメッセージとして返される。 |
|||
== 形式意味論 == |
|||
両者とも一長一短がありどちらがすぐれているとは言えない。また並列・並行処理が可能な環境では一方の仕組みがあれば、それを利用してもう一方も実現可能である。一般的な傾向としては、メッセージの伝送や処理に時間が掛かる場合は非同期式の方が効率は良く、そうでない場合には同期式の方が挙動が分かりやすく利用しやすい。[[並列処理]]・[[並行処理]]システムを記述する言語や[[分散コンピューティング|分散システム]]を記述する言語ではOSなどが提供するメッセージ機能や自前の配送メカニズムを使って非同期式でメッセージが配送される場合もあるが、一般にオブジェクト指向プログラミング言語ではその多くが同一のプログラム内の通信であるので同期式のメッセージ配送が利用される。特に[[コンパイル]]されるタイプのオブジェクト指向プログラミング言語では、しばしば特別なメッセージ配送の仕組みを用意せず、特別な形式の関数の呼び出しでメッセージの配送を直接に表現する。即ち、各メソッドを内部的には関数として実現し、メッセージIDはメソッド名で表し、関数の第一引数としてオブジェクトIDを渡し(この第一引数は多くの言語で特別な記法で表される)、追加の引数としてメッセージの追加部分の情報を渡すのである。こうするとメッセージ送信は直接的なメソッドの関数呼び出しとして表せる。ただし、プログラムで[[継承 (プログラミング)|継承]]の仕組みが利用されている場合はプログラムのテキストからだけでは呼び出すべきメソッドが決定できない場合があるので、実行時にメソッドを決定するために[[メソッド・サーチ]]や[[仮想関数テーブル]]といった仕組みが必要となる。多くのプログラミング言語においてメッセージは、メソッド呼び出しの比喩でしかないことが多い。SmalltalkやObjective-Cの様な言語では、メッセージはメソッド呼び出しとは独立した機構として存在している。メッセージが機構として存在する言語では、メッセージをオブジェクトに送信した際、宛先のオブジェクトにメッセージで指定したメソッドが存在しない場合でもメッセージを処理することが出来る。これを利用し、メッセージの配送先を別のオブジェクトに指定したり、メッセージを一時保存したり、不要なメッセージを無視する等といったメッセージ処理が行われる。 |
|||
{{see also|プログラム意味論}} |
|||
== 脚注 == |
== 脚注 == |
||
{{脚注ヘルプ}} |
{{脚注ヘルプ}} |
||
=== 注釈 === |
|||
{{Notelist2}} |
|||
=== 出典 === |
|||
{{Reflist}} |
{{Reflist}} |
||
== 出典 == |
|||
* {{Cite journal |
|||
|last=Kindler |
|||
|first=E. |
|||
|last2=Krivy |
|||
|first2=I. |
|||
|year=2011 |
|||
|title=Object-Oriented Simulation of systems with sophisticated control |
|||
|pages=313–343 |
|||
|publisher=International Journal of General Systems |
|||
|ref=harv |
|||
}} |
|||
* {{Cite book |
|||
|last=Lewis |
|||
|first=John |
|||
|last2=Loftus |
|||
|first2=William |
|||
|title=Java Software Solutions Foundations of Programming Design |
|||
|edition=6th |
|||
|year=2008 |
|||
|publisher=Pearson Education Inc. |
|||
|isbn=978-0-321-53205-3 |
|||
|ref=harv |
|||
}} |
|||
* {{cite web2 |
|||
|last=Kay |
|||
|first=Alan |
|||
|last2=Ram |
|||
|first2=Stefan |
|||
|title=Dr. Alan Kay on the Meaning of “Object-Oriented Programming” |
|||
|url=https://www.purl.org/stefan_ram/pub/doc_kay_oop_en |
|||
|website=www.purl.org |
|||
|access-date=2022-08-15 |
|||
|date=2003-07-23 |
|||
|ref={{sfnref|Meaning|2003}} |
|||
}} |
|||
* {{Cite journal |
|||
|last=McCarthy |
|||
|first=J. |
|||
|last2=Brayton |
|||
|first2=R. |
|||
|last3=Edwards |
|||
|first3=D. |
|||
|last4=Fox |
|||
|first4=P. |
|||
|last5=Hodes |
|||
|first5=L. |
|||
|last6=Luckham |
|||
|first6=D. |
|||
|last7=Maling |
|||
|first7=K. |
|||
|last8=Park |
|||
|first8=D. |
|||
|last9=Russell |
|||
|first9=S. |
|||
|date=March 1960 |
|||
|title=LISP I Programmers Manual |
|||
|url=http://history.siam.org/sup/Fox_1960_LISP.pdf |
|||
|page=88f |
|||
|publisher=Artificial Intelligence Group, [[:en:M.I.T. Computation Center]] and Research Laboratory |
|||
|author2-link=:en:Robert Brayton (computer scientist) |
|||
|author3-link=:en:Daniel Edwards (programmer) |
|||
|author4-link=:en:Phyllis Fox |
|||
|author5-link=:en:Louis Hodes |
|||
|author6-link=:en:David Luckham |
|||
|author7-link=:en:Klim Maling (programmer) |
|||
|author8-link=:en:David Park (computer scientist) |
|||
|author9-link=:en:Steve Russell (computer scientist) |
|||
|place=[[ボストン]], [[マサチューセッツ]] |
|||
|quote=In the local M.I.T. patois, association lists [of atomic symbols] are also referred to as "property lists", and atomic symbols are sometimes called "objects". |
|||
|url-status=dead |
|||
|archive-date=17 July 2010 |
|||
|archiveurl=https://web.archive.org/web/20100717111134/http://history.siam.org/sup/Fox_1960_LISP.pdf |
|||
|ref={{sfnref|LISP 1 Programmers Manual|1960}} |
|||
}} |
|||
* {{Cite book |
|||
|last=McCarthy |first=John |
|||
|author-link=:en:John McCarthy (computer scientist) |
|||
|title=LISP 1.5 Programmer's Manual |
|||
|url=https://archive.org/details/lisp15programmer00john/page/105 |
|||
|year=1962 |
|||
|publisher=[[:en:MIT Press]] |
|||
|isbn=978-0-262-13011-0 |
|||
|page=[https://archive.org/details/lisp15programmer00john/page/105 105] |
|||
|quote=Object — a synonym for atomic symbol |
|||
|last2=Abrahams |
|||
|first2=Paul W. |
|||
|last3=Edwards |
|||
|first3=Daniel J. |
|||
|author3-link=:en:Daniel Edwards (programmer) |
|||
|last4=Hart |
|||
|first4=swapnil d. |
|||
|last5=Levin |
|||
|first5=Michael I. |
|||
|df=dmy-all |
|||
|ref={{sfnref|LISP 1.5 Programmers Manual|1962}} |
|||
}} |
|||
* {{Cite web |
|||
|url=http://handle.dtic.mil/100.2/AD404549 |
|||
|title=Sketchpad: A Man-Machine Graphical Communication System |
|||
|last=Sutherland |
|||
|first=I. E. |
|||
|date=1963-01-30 |
|||
|publisher=Technical Report No. 296, Lincoln Laboratory, Massachusetts Institute of Technology via Defense Technical Information Center (stinet.dtic.mil) |
|||
|access-date=17 July 2019 |
|||
|ref={{sfnref|Sutherland|1963}} |
|||
}} |
|||
* {{cite book |
|||
|last1=Ali |
|||
|first1=Junade |
|||
|title=Mastering PHP Design Patterns |
|||
|date=2016-09-28 |
|||
|publisher=Packt Publishing Limited |
|||
|location=Birmingham, England, UK |
|||
|isbn=978-1-78588-713-0 |
|||
|edition=1 |
|||
|language=en |
|||
|ref=harv |
|||
}} |
|||
* {{cite journal |
|||
|last1=Nygaard |
|||
|first1=Kristen |
|||
|last2=Dahl |
|||
|first2=Ole-Johan |
|||
|title=Development of the SIMULA languages |
|||
|journal=ACM SIGPLAN Notices |
|||
|pages=245–272 |
|||
|volume=13 |
|||
|issue=8 |
|||
|publisher=Association for Computing Machinery |
|||
|date=1978-08-01 |
|||
|doi=10.1145/960118.808391 |
|||
|ref=harv |
|||
}} |
|||
* {{Cite journal |
|||
|last = Dahl |
|||
|first = Ole Johan |
|||
|year = 2004 |
|||
|chapter-url = http://www.mn.uio.no/ifi/english/about/ole-johan-dahl/bibliography/the-birth-of-object-orientation-the-simula-languages.pdf |
|||
|doi = 10.1007/978-3-540-39993-3_3 |
|||
|chapter = The Birth of Object Orientation: The Simula Languages |
|||
|title = From Object-Orientation to Formal Methods |
|||
|volume = 2635 |
|||
|pages = 15–25 |
|||
|series = Lecture Notes in Computer Science |
|||
|isbn = 978-3-540-21366-6 |
|||
|citeseerx = 10.1.1.133.6730 |
|||
|access-date = 22 October 2021 |
|||
|ref=harv |
|||
}} |
|||
* {{Cite journal |
|||
|first=Alan |
|||
|last=Kay |
|||
|title=The Early History of Smalltalk |
|||
|journal=ACM SIGPLAN Notices |
|||
|volume=28 |
|||
|issue=3 |
|||
|date=1993-03-01 |
|||
|pages=69–95 |
|||
|doi=10.1145/155360.155364 |
|||
|publisher=Association for Computing Machinery |
|||
|ref=harv |
|||
}} |
|||
* {{Cite journal |
|||
|last = Holmevik |
|||
|first = Jan Rune |
|||
|title = Compiling Simula: A historical study of technological genesis |
|||
|journal = IEEE Annals of the History of Computing |
|||
|volume = 16 |
|||
|issue = 4 |
|||
|pages = 25–37 |
|||
|year = 1994 |
|||
|doi = 10.1109/85.329756 |
|||
|s2cid = 18148999 |
|||
|ref=harv |
|||
}} |
|||
* {{Cite book |
|||
|title=Touch of Class: Learning to Program Well with Objects and Contracts |
|||
|first=Bertrand |
|||
|last=Meyer |
|||
|publisher=Springer Science & Business Media |
|||
|year=2009 |
|||
|isbn=978-3-540-92144-8 |
|||
|pages=329 |
|||
|bibcode=2009tclp.book.....M |
|||
|ref=harv |
|||
}} |
|||
== 関連項目 == |
== 関連項目 == |
||
<!-- ここから [[en:Object-oriented programming]] oldid=1055370410 の翻訳 --> |
|||
{{Wikibooks|オブジェクト指向|オブジェクト指向}} |
|||
<!-- * [[Comparison of programming languages (object-oriented programming)]] --> |
|||
* [[メッセージ (コンピュータ)]] |
|||
<!-- * [[Comparison of programming paradigms]] --> |
|||
* [[メソッド (計算機科学)]] |
|||
<!-- * [[Component-based software engineering]] --> |
|||
* [[フィールド (計算機科学)]] |
|||
* [[契約プログラミング]] |
|||
* [[インスタンス変数]] |
|||
<!-- * [[Object association]] --> |
|||
* [[クラス変数]] |
|||
* [[クラス (コンピュータ)]] |
|||
* [[インスタンス]] |
|||
* [[カプセル化]] |
|||
* [[継承 (プログラミング)|継承]] |
|||
* [[委譲]] |
|||
* [[プログラミング言語]] |
|||
* [[オブジェクト指向モデリング]] |
|||
* [[オブジェクト指向分析設計]] |
|||
* [[オブジェクト指向]] |
|||
* [[オブジェクトデータベース]] |
* [[オブジェクトデータベース]] |
||
<!-- * [[Object model reference]] --> |
|||
* [[トップダウン設計とボトムアップ設計]] |
|||
<!-- * [[Object modeling language]] --> |
|||
* [[オブジェクト指向分析設計]] |
|||
<!-- * [[Object-relational impedance mismatch]] (and [[The Third Manifesto]]) --> |
|||
* [[オブジェクト関係マッピング]] |
* [[オブジェクト関係マッピング]] |
||
=== システム === |
|||
* [[:en:CADES|CADES]] |
|||
* [[Common Object Request Broker Architecture]] (CORBA) |
|||
* [[Distributed Component Object Model]] |
|||
* [[:en:Distributed Data Management Architecture|Distributed Data Management Architecture]] |
|||
* [[:en:Jeroo|Jeroo]] |
|||
=== モデリング言語 === |
|||
* [[:en:IDEF4|IDEF4]] |
|||
* [[インタフェース記述言語]] |
|||
* [[:en:Lepus3|Lepus3]] |
|||
* [[統一モデリング言語|UML]] |
|||
<!-- ここまで [[en:Object-oriented programming]] oldid=1055370410 の翻訳 --> |
|||
{{Normdaten}} |
{{Normdaten}} |
||
{{プログラミング言語の関連項目}} |
{{プログラミング言語の関連項目}} |
||
{{デフォルトソート:おふしえくとしこうふろくらみんく}} |
{{デフォルトソート:おふしえくとしこうふろくらみんく}} |
||
[[Category:オブジェクト指向|*ふろくらみんく]] |
[[Category:オブジェクト指向|*ふろくらみんく]] |
2024年8月3日 (土) 12:42時点における最新版
この項目「オブジェクト指向プログラミング」は途中まで翻訳されたものです。(原文:en:Object-oriented programming(13:57, 15 November 2021 UTC)の翻訳) 翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2021年11月) |
プログラミング・パラダイム |
---|
オブジェクト指向プログラミング(オブジェクトしこうプログラミング、英: object-oriented programming, OOP)とは、「オブジェクト」という概念に基づいたプログラミングパラダイムの一つである。
OOPでは、相互に作用するオブジェクトを組み合わせてプログラムを設計する[1][2]。
OOPの方法として、クラスベースOOPとプロトタイプベースOOPがある。 クラスベースOOPでは、オブジェクトが属する集合としてクラスを定義し、クラス定義からそのインスタンスとしてオブジェクトを生成する。 プロトタイプベースOOPでは既存のオブジェクト(プロトタイプ)を複製し、プロトタイプの複製に変更を加えることで様々な対象を表すオブジェクトを生成する。
広く使われているプログラミング言語の多く、例えばC++やJavaやPythonなどは、マルチパラダイムであるが、程度の差はあれ、オブジェクト指向プログラミングをサポートしており、大抵は命令型や手続き型プログラミングとの組み合わせで用いられる。
歴史
[編集]アラン・ケイによれば “object-oriented”(オブジェクト指向)という言葉は、1967年ごろケイ自身が考案したものであるという[3]。しかし、現在のオブジェクト指向プログラミングという文脈における「オブジェクト」や「指向」を表す用語が初めて登場したのは、1950年代後半から1960年代前半にかけてのマサチューセッツ工科大学(MIT)においてである。 1960年代初頭の人工知能グループ界隈では、「オブジェクト」はプロパティ(属性)を持つ個体識別可能なアイテム(LISPの atom)を意味していた[4][5]。 後にケイは、1966年にLISPの内部構造を詳細に理解したことが彼の考え方に強い影響を与えたと述べている[3]。
MITにおける初期の例としては、この他にも、1960年から1961年にかけてアイバン・サザランドが作成したSketchpadが挙げられる。サザランドは、1963年の技術レポートの用語集 (Sketchpadに関する自身の博士論文をもとにしたもの)で、グラフィカルなインタラクションに特化しているとはいえ「オブジェクト」と「インスタンス」の概念を定義している (クラスの概念は"master"または"definition"として把握されている)。[6] また、MIT版のALGOLであるAED-0では、データ構造 (この言語の方言では"plexes"と呼称)と手続きを直接結びつけ、後に「メッセージ」、「メソッド」、「メンバ関数」と呼ばれるようなものの萌芽がみられる。[7]
1962年、クリステン・ニゴールはノルウェー計算センターでシミュレーション言語のプロジェクトを開始した。これは彼が以前に用いたモンテカルロ法と実世界のシステムを概念化する仕事に基づくものであった。オーレ=ヨハン・ダールが正式にプロジェクトに参加し、UNIVAC I (UNIVAC 1107) 上で動作するSimulaプログラミング言語が設計された。Simulaは、クラスやオブジェクト、継承、ダイナミックバインディングなど、今日のオブジェクト指向プログラミングには不可欠である重要な概念を導入した。[8] Simulaはまた、プログラミングにおけるデータ保全を考慮して設計されたものでもあった。プログラミングのデータ保全のために参照カウントによる検出プロセスが実装されたのに加え、最終手段としてガベージコレクタが主記憶装置(メモリ)内の使用されていないオブジェクトを削除するようになっていた。しかし、データオブジェクトの概念は1965年には既に確立されていたものの、プライベートやパブリックといった変数のスコープのレベルによるデータのカプセル化については、アクセスする手続きもまた隠蔽できなければならなかったため、Simulaでは実装されなかった。[9]
初期の段階では、Simulaはプログラミング言語ALGOL 60のための手続きパッケージとされていた。しかし、ALGOLによる制約に不満を感じた研究者たちは、UNIVAC ALGOL 60コンパイラを使用した本格的なプログラミング言語としてSimulaを開発することにした。ダールとニゴールは1965年から1966年にかけてSimulaの普及に尽力し、スウェーデン、ドイツ、ソビエト連邦などでSimulaの使用が増加した。1968年には、バロース B5000上で広く利用されるようになり、後にはURAL-16コンピュータ上にも実装された。1966年、ダールとニゴールはSimulaのコンパイラを書いた。彼らは、SIMSCRIPT (自由形式の英語的な汎用シミュレーション言語)を実装に用いて、アントニー・ホーアのレコード・クラス概念を取り入れることに熱心に取り組んだが、彼らは、一般化されたプロセスの概念として、レコード・クラスの属性を保持する層と、接頭辞 (prefix) の系列を保持する層の二層構造とする方式に辿り着いた。 接頭辞の系列を通じて、プロセスは先行する定義を参照し、それらの属性を追加することができる。このようにしてSimulaは、クラスとサブクラスの階層を導入し、これらのクラスからオブジェクトを生成することを可能にする方法を導入することとなった。[7]
1972年にはIBM System/360およびIBM System/370のIBMメインフレーム用にSimula 67コンパイラが完成[8]。同年、フランスのCII 10070およびCII Iris 80メインフレーム用のSimula 67コンパイラが無償で提供された。1974年には、Simulaユーザー会は23カ国のメンバーを有するまでになっていた。1975年初頭、DECsystem-10メインフレームファミリー用のSimula 67コンパイラが無償でリリースされ、同年8月までにDECsystem-10のSimula 67コンパイラは28サイトにインストールされた (そのうちの22サイトは北米)。オブジェクト指向のプログラミング言語としてSimulaは、貨物港における船舶と積載貨物の動きを調査・改善するための研究のような、物理モデリングの研究に携わる研究者に主に利用されていた[8]。
1970年代、Xerox パロアルト研究所(PARC)において、アラン・ケイ、ダン・インガルス、アデル・ゴールドバーグらによって、プログラミング言語Smalltalkの最初のバージョンが開発された。Smaltalk-72はプログラミング環境を含み、動的型付けであり、当初はコンパイルしてからの実行ではなくインタプリタ実行であった。Smalltalkは、言語レベルでのオブジェクト指向の適用と、グラフィカルな開発環境で注目されたが、Smalltalkが様々なバージョンを経て成長するにつれ、この言語への関心も高まっていった[10]。 SmalltalkはSimula 67で導入されたアイデアの影響を受けてはいるものの、クラスを動的に生成・変更できるなど、完全に動的なシステムとして設計された[11]。
1970年代、SmalltalkはLispコミュニティに影響を与え、Lispコミュニティは、Lispマシンを通じて開発者に紹介されたオブジェクトベースの技術を取り入れた。Lispの様々な拡張機能(LOOPS やFlavorsなどが導入した多重継承やMixin)の試みは、最終的に関数型プログラミングとオブジェクト指向プログラミングを統合し、メタオブジェクト・プロトコルによる拡張を可能にしたCommon Lispのオブジェクト指向システム (CLOS) へとつながった。 1980年代には、メモリ上のオブジェクトをハードウェアでサポートするプロセッサ・アーキテクチャを設計する試みがいくつか行われたが、Intel iAPX 432やLinn Smart、Rekursivなど、いずれも商業的に成功しなかった。
1981年、ゴールドバーグはByte Magazine 8月号のSmalltalk特集号で、Smalltalkとオブジェクト指向プログラミングをより多くの人々に紹介した。 1986年、ACMが主催する第一回OOPSLAが開催され、予想に反して1,000人が参加した。1980年代半ばには、ITTでSmalltalkを使っていたブラッド・コックスによってObjective-Cが開発され、博士論文でSimulaを扱っていたビャーネ・ストロヴストルップよってオブジェクト指向のC++が作られた[10]。 1985年には、バートランド・メイヤーもEiffelの最初の設計を行った。ソフトウェアの品質に焦点を当てたEiffelは、純粋なオブジェクト指向プログラミング言語であり、ソフトウェアのライフサイクル全体をサポートする記法をもつ。メイヤーは、ソフトウェア工学とコンピュータサイエンスの少数の重要なアイデアに基づいたEiffelでのソフトウェア開発手法をオブジェクト指向入門で解説している。Eiffelでは、メイヤーが開発した信頼性担保の機構である契約プログラミングが、開発手法と言語の双方に不可欠な要素となっている。
1990年代前半から半ばにかけて、オブジェクト指向プログラミングは、その技術をサポートするプログラミング言語が広く普及したことにより、プログラミングパラダイムとして主要なものとなった。その中には、Visual FoxPro 3.0[注 1][12][13]、C++[14]、Delphi[15]などがある。 その勢力は、オブジェクト指向プログラミング技術に支えられたグラフィカルユーザインタフェースの人気向上と共に高まった。動的なGUIライブラリとOOP言語が密接に連携している例としては、Smalltalkを規範にしたCのオブジェクト指向の動的メッセージング拡張であるObjective-Cで書かれたmacOSのCocoaフレームワークなどが挙げられる。また、OOPツールキットの存在は、イベント駆動型プログラミングの人気を高めることにも繋がった(ただし、この概念はOOPに限定されるものではない)。 チューリッヒ工科大学では、ニクラウス・ヴィルトらが、データ抽象化やモジュール化プログラミングなどの研究を行っていた (ただし、これらは1960年代以前にも一般的に使われてはいた)。 1978年に発表されたModula-2にはこの2つが盛り込まれており、その後に発表されたOberonでは、オブジェクト指向やクラスなどに対する独自のアプローチが盛り込まれている[16]。
オブジェクト指向の機能は、Ada、BASIC、Fortran、Pascal、COBOLなど、既存の多くの言語に追加されていったが、しかし、設計当初にこれらの機能を想定していなかった言語に追加した場合、コードの互換性や保守性には問題が生じることが多かった。
最近では、主としてオブジェクト指向でありながら、手続き型プログラミングの方法論にも対応した言語が数多く登場している。そのような言語としては、PythonやRubyがある。最近の商業的なオブジェクト指向言語で最も重要なものには、サン・マイクロシステムズ社が開発したJavaや、Microsoftの.NETプラットフォーム用に設計されたC#、Visual Basic .NET (VB.NET) が挙げられる。 これら二つのフレームワークは、実装を抽象化することによるOOP使用の利点をそれぞれの方法で示している。VB.NETとC#間では言語間継承をサポートしており、一方の言語で定義されたクラスが他方の言語で定義されたクラスをサブクラス化することができる[17]。
OOPLの特徴
[編集]オブジェクト指向プログラミング言語 (OOPL) では、オブジェクトを使用するが、言語仕様でOOP対応を謳っていても、関連する技術や構造のすべてが言語機能により直接サポートされているわけではない。以下に挙げる特徴は、特に言及されている例外を除いて、クラス指向やオブジェクト指向の傾向が強いとされる言語 (あるいはOOPをサポートするマルチパラダイムプログラミング言語)に共通すると考えられるものである。
非OOPLとの共通点
[編集]- 変数
- 整数型や英数字の文字のような形式化された少数の組み込みデータ型の情報、または、文字列、リスト、ハッシュテーブルなどのデータ構造に、組み込み型もしくは、ポインタが格納されたものを結果として格納することができる。
- 手続き(関数、メソッド、サブルーチンとも呼ばれる)
- 入力を受け取り、出力を生成し、データを操作する。近年の言語には、ループや条件構文のような構造化プログラミングの構成要素が含まれる。
モジュラープログラミングサポートでは、手続きをファイルやモジュールにまとめて整理する機能がある。モジュールは名前空間を持つため、あるモジュールの識別子が、他のモジュールの同名の手続きや変数と衝突することを避けることができる。
クラスとオブジェクト
[編集]オブジェクト指向プログラミング(OOP)をサポートする言語は、コードの再利用と拡張性のために、典型的には、クラスまたはプロトタイプの形で継承を使用する。クラスを使用するものは、主に二つの概念をサポートする。
- クラス
- 与えられた型やクラスのオブジェクトのデータ形式やそれらを利用可能な手続きの定義であり、また、データや手続き (クラスメソッドとも呼ばれる)そのものを含む場合もある。つまり、クラスは、メンバーとなるデータや手続きを含むものである。
- オブジェクト
- クラスのインスタンス
オブジェクトは、システムが扱おうとする(多くは現実世界の)対象を表現したものである。例えば、描画アプリケーションにおける「円」・「四角」・「メニュー」などのオブジェクトや、オンラインショッピングシステムにおける「ショッピングカート」・「顧客」・「商品」などのオブジェクトがある[18]。 オブジェクトは、ファイルのオープンを表すオブジェクトや、米国慣用単位からメートル法に変換するサービスを提供するオブジェクトのように、より抽象的なエンティティを表すこともある。
各々のオブジェクトは、特定のクラスのインスタンスと呼ばれる (例えば、name
フィールドに "Mary"
が設定されているオブジェクトは、クラスEmployee
のインスタンスとなる)。OOPの手続きはメソッドと呼ばれ、変数は、フィールド、メンバー、属性、プロパティとも呼ばれる。関連して、以下のような用語がある
- クラス変数
- クラス自体に属する。変数をクラス全体に唯一のものとして所有する。
- インスタンス変数または属性
- 各々のオブジェクトに属する。データはオブジェクトごとに所有する。
- メンバ変数
- 特定のクラスで定義されるクラス変数とインスタンス変数の両方を指す。
- クラスメソッド
- クラス自体に属する。クラス変数へのアクセスのみ有し、手続き呼び出しからの入力のみ受け付ける。
- インスタンスメソッド
- 各々のオブジェクトに対して、呼び出された特定のオブジェクトのインスタンス変数、入力、およびクラス変数にアクセスできる。
オブジェクトは、複雑な内部構造を持った変数のようにアクセスされるが、多くの言語で実質的にはポインタでありインスタンス (ヒープやスタック内のメモリ上オブジェクト)への参照として機能する。オブジェクトは、内部コードと外部コードを分離を可能とする抽象化の層を提供する。外部のコードは、特定の入力引数の組み合わせで特定のインスタンスメソッドを呼び出したり、インスタンス変数を読み込んだり、インスタンス変数に書き込んだりすることで、オブジェクトを使用することができる。オブジェクトは、コンストラクタと呼ばれるクラス内の特定メソッドを呼び出すことで生成される。プログラムは実行中に、それぞれ独立して操作することが可能な同じクラスのインスタンスを多数作成することができる。これは、同じ手続きを異なるデータセットで簡便に利用する方法となる。
クラスを使用するOOPをクラスベース・プログラミングと呼ぶことがあるが、プロトタイプベース・プログラミングではクラスを使用しないのが一般的である。そのため、オブジェクトとインスタンスという概念の定義は、それぞれで大きく異なるが類似した用語が用いられている。
言語によっては、トレイトやmixinのような概念を用いてクラスやオブジェクトを構成することが可能である。
クラスベース対プロトタイプベース
[編集]クラスベースの言語では、予めクラスが定義され、そのクラスに基づいてオブジェクトがインスタンス化される。例えば、appleとorangeという2つのオブジェクトが、Fruitというクラスからインスタンス化された場合、それらは本質的には果物であり、同じように取り扱えることの保証がされる。
プロトタイプベースの言語では、オブジェクトが主要な実体である。クラスは存在しない。オブジェクトのプロトタイプとは、あるオブジェクトからリンクされている別のオブジェクトに過ぎない。すべてのオブジェクトは一つのプロトタイプリンクを持つ (一つのみ)。新しいオブジェクトは、プロトタイプとして選ばれた既存のオブジェクトに基づいて作成することができる。fruitオブジェクトが存在し、appleとorangeの両方がfruitをプロトタイプとしている場合、2つの異なるオブジェクトappleとorangeを果物と考えることができる。fruit「クラス」という概念は明示的には存在しないが、同じプロトタイプを共有するオブジェクトの同値クラスとしては存在する。プロトタイプの属性やメソッドは、このプロトタイプで定義された同値クラスのすべてのオブジェクトから委譲先とされる。オブジェクト固有の属性やメソッドは、同値クラスの他のオブジェクトに共有されない場合がある。例えば、属性sugar_contentはappleには予期せず存在しない場合がある。プロトタイプで実装できるのは単一継承のみである。
動的ディスパッチとメッセージパッシング
[編集]メソッドの呼び出しに応じて実行する手続きのコードを選択するのは、外在するコードではなく、オブジェクトの責任である。典型的には、オブジェクトに関連付けられたテーブルから実行時にメソッドを検索するが、この機能は動的ディスパッチとして知られており、抽象データ型 (またはモジュール)において、すべてのインスタンスの操作が静的に実装されているのとは対照的である。呼び出しの変化が、呼び出されたオブジェクトの単一の型にのみには依らない場合 (つまり複数のオブジェクトがメソッド選択に関与する場合)、多重ディスパッチと呼ばれる。
メソッド呼び出しは、メッセージパッシングとも呼ばれる。これは、メソッド呼び出しを、ディスパッチのためにオブジェクトに渡されるメッセージ (メソッドの名前とその入力引数)として概念化したものである。
カプセル化
[編集]カプセル化とは、オブジェクト指向プログラミングにおいて、データとそのデータを操作する関数を結び付け、両者を外部からの干渉や誤用から守ることである。データのカプセル化は、OOPの重要な概念である情報隠蔽にも通じる。
クラスがメソッドを通じてのみオブジェクトの内部データへのアクセスを許可し、それ以外の呼び出しコードにアクセスを許可しない場合、これはカプセル化として知られる強力な抽象化、または情報隠蔽の形態である。いくつかの言語 (Javaなど)では、クラスがアクセス制限を明示的に行うことができる。例えば、内部データであることをprivate
というキーワードで指定し、クラス外のコードが使用することを意図したメソッドをpublic
というキーワードで指定することができる。また、メソッドはpublic、private、またはprotected
(同クラスとそのサブクラスからのアクセスは許可するが、異なるクラスのオブジェクトからのアクセスは許可しない)のように中間のアクセスレベルとすることもできる。また他の言語 (Pythonなど)では、アクセス制限は、命名法などの慣例によってのみ強制される (例えば、private
のメソッドはアンダースコアで始まる名前を持つ、など)。カプセル化することで、外部のコードがオブジェクトの内部動作に関与してしまうことを防ぐことができ、リファクタリングを容易にする。例えば、クラスの設計者は、外部のコードは変更することなく、そのクラスのオブジェクト内部のデータ表現を変更することができる (公開されているメソッドの呼び出しが同じように動作する限りにおいて)。また、特定のデータに関連するすべてのコードを同じクラスに配置することで、他のプログラマが理解しやすいように整理することもできる。カプセル化は、疎結合を促進する技術である。
コンポジション、継承、委譲
[編集]オブジェクトは、そのインスタンス変数に他のオブジェクトを含めることができ、これをオブジェクトコンポジションと呼ぶ。例えば、"従業員"クラスのオブジェクトは、"名前" や "役職"といった自身のインスタンス変数に加えて、"住所"クラスのオブジェクトを (直接またはポインタを介して)含むことができる。 オブジェクトコンポジションは、"has-a" の関係を表現するために使用できる。例えば、すべての従業員は住所を持っているので、すべての"従業員"オブジェクトは、"住所"オブジェクトを格納する場所 (オブジェクトに直接埋め込まれていることも、ポインターで指定された別の場所に格納されることもある)にアクセスできる。
クラスをサポートする言語は、大抵は継承をサポートしている。継承とは、クラスを「○○は△△である」という関係("is-a-type-of")の階層に配置することであるが、例えば、Employee
クラスは Person
クラスを継承する場合、親クラスで利用できるデータやメソッドは、子クラスでも同じ名前で利用可能である。また、Person
クラスは、first_name
と last_name
という変数を make_full_name()
というメソッドで定義した場合、これらの定義はEmployee
クラスでも利用可能である。加えて、Employee
クラスには変数 position
と salary
を追加することもできる。この手法では、同じ手続きやデータ定義を簡単に再利用できるだけでなく、現実世界の関係を直感的に反映できる可能性を広げる。開発者は、データベースのテーブルやプログラミングのサブルーチンを扱うのではなく、開発アプリケーションのユーザーがより精通しているドメインのオブジェクトを扱うことができる[19]。
サブクラスはスーパークラスで定義されたメソッドをオーバーライドできる。言語よっては多重継承が可能だが、多重継承ではオーバーライドの解決は複雑になる可能性がある。また、言語によってはmixinを特別にサポートしているものもあるが、多重継承をサポートする言語では、mixinは単に is-a-type-of の関係を表すことのないクラスの一つである。mixinは典型的には、同一のメソッドを複数のクラスに追加するために使われる。例えば、共通の親クラスを持たないFileReader
クラスとWebPageScraper
クラスに、unicode_to_ascii()
というメソッドを持つUnicodeConversionMixin
クラスを含ませる(mixinする)ことにより共通のメソッドを提供することができる。
抽象クラスは、オブジェクトへインスタンス化することはできない。インスタンス化できる他の具象クラスが継承するためにのみ存在する。Javaでは、final
キーワードを用いて、クラスがサブクラス化されるのを防止できる。
Composition over inheritanceの方針は、継承の代わりに合成を使って has-a 関係を実装することを提唱している。例えば、EmployeeクラスはPersonクラスを継承する代わりに、各Employeeオブジェクトの内部にPersonオブジェクトを含めることで、仮にPersonクラスが公開された属性やメソッドを多数持っていても、外部のコードからは隠せるようにする。また、Goのように、継承を全くサポートしていない言語も存在する。
開放/閉鎖原則は、クラスやメソッドは「拡張に対しては開放的であるが、変更に対しては閉鎖的であるべき」という原則を提唱している。
委譲もまた、継承の代わりに利用できる言語機能である。
ポリモーフィズム
[編集]サブタイピング (ポリモーフィズムの一形態)では、呼び出すコードが、サポートされている階層のどのクラスを操作しているのか (親クラスなのかその子孫なのか)という詳細には関知しないことが可能である。一方、継承階層内のオブジェクト間では、同じ操作名でも挙動が異なる場合がある。
例えば、Circle型とSquare型のオブジェクトが、Shapeという共通のクラスから派生している場合、Shapeの各型のDraw関数は、それぞれの描画に必要な機能を実装しているが、呼び出しのコードは、描画されるShapeが特定の型であるかどうかには無関心でいられる。
これもまた、クラス階層からコードを引き離して単純化し、強力な関心の分離を可能にする抽象化の一種である。
オープンな再帰
[編集]オープンな再帰[20]をサポートする言語では、オブジェクトのメソッドは同じオブジェクト上の他のメソッドや自分自身を呼び出すことができる。通常はthis
やself
と呼ばれる特別な変数やキーワードを使用して呼び出しをするのが一般的であるが、この変数は「遅延結合」であり、あるクラスで定義されたメソッドが、そのサブクラスで後から定義された別のメソッドを呼び出すことができる。
デザインパターン
[編集]継承とBehavioral subtyping
[編集]継承は意味論的には is-a の関係を作るため、サブクラスからインスタンス化されたオブジェクトは、スーパークラスからインスタンス化されたオブジェクトの代わりに、常に安全に使用できる、と推測するのは直感的ではあるが、この直観は、ほとんどのOOPL、特にミュータブルなオブジェクトを許可している言語では誤りである。 (ミュータブルなオブジェクトを持つ)OOPLの型検査器によって強制される部分型付け (部分型多相/サブタイピング多相)では、いかなる状況でも、振る舞いにおける部分型付け (Behavioral subtyping) は保証することはできない。 Behavioral subtyping は一般に決定不能であり、プログラム (コンパイラ)では実装できない。クラスやオブジェクトの階層は、文法間違いでは検出できない使い方がされる可能性を考慮に入れて、慎重に設計する必要がある。この問題はリスコフの置換原則としても知られている。
GoFデザインパターン
[編集]オブジェクト指向とデータベース
[編集]OOPL と関係データベース管理システム (RDBMS) は、どちらも今日[update]のソフトウェアとして非常に一般的であるが、双方を接続する場合、関係データベースは、オブジェクトを直接格納しないため (ただし、今日ではこれに近しい拡張機能を持つ RDBMS も存在する)、この二つの世界を橋渡しすることが一般的な需要として擡頭した。アクセス方法やデータパターンを OOPL と RDB との間で橋渡しする際の問題は、オブジェクト-リレーションのインピーダンスミスマッチと呼ばれている。 この問題に対処するためのアプローチはいくつかある。欠点のない一般的な解決策といえるものはない[21]が、代表的なものとして、オブジェクト関係マッピング(ORM)があり、Visual FoxProなどのIDE言語や、Java Data Objects、Ruby on RailsのActive Recordなどのライブラリが存在する。
また、RDBMS を代替するオブジェクトデータベースも存在するが、技術的にも商業的にも RDBMS ほど広く成功は収めていない。
OOPと制御構造
[編集]OOPは、ソースコードのコードの再利用性やソフトウェアの保守性を高めるよう発展してきたが[22] 、ある時期までは制御フローの透過的な表現については、あまり省みられることもなく、コンパイラが任意に処理すれば良いと考えられてきた。しかし、OOPでの実現にはある種の困難を伴うものの、並列ハードウェアやマルチスレッドコーディングの重要性が増すにつれ透過的な制御フローの開発は重要になってきている[23][24][25][26]。
責任駆動設計 対 データ駆動設計
[編集]責任駆動設計では、クラスは、共有する情報とそれを扱う責務という観点から定義されるべきであるとし、クラス定義 (とその利用者)の契約として設計する。Wirfs-BrockとWilkersonは、責任駆動設計と対比して、データ駆動設計は、クラスが保持すべきデータ構造のみを中心に定義されるとし、責任駆動型の設計が望ましいとしている[27]。
SOLID、GRASPのガイドライン
[編集]SOLIDのガイドラインは、プログラミングにおける五つの実践の頭文字をとった語呂合わせであり、マイケル・C・フェザーズ[28]が考案し提唱したものである
- S : 単一責任の原則(英語版)
- O : 開放/閉鎖原則
- L : リスコフの置換原則
- I : インターフェイス分離の原則(英語版)
- D : 依存性逆転の原則
GRASP(General Responsibility Assignment Software Patterns)は、クレーグ・ラーマンが提唱したもう一つガイドラインである。
形式意味論
[編集]脚注
[編集]注釈
[編集]- ^ 1995年6月 Visual FoxPro 3.0, FoxPro は手続き型言語からオブジェクト指向言語へと進化した。Visual FoxPro 3.0では、データベースコンテナ、シームレスなクライアント/サーバー機能、ActiveXのサポート、OLEオートメーションとヌルのサポートが導入された。Summary of Fox releases
出典
[編集]- ^ Kindler & Krivy 2011.
- ^ Lewis & Loftus 2008, §1.6 "Object-Oriented Programming".
- ^ a b Meaning 2003.
- ^ LISP 1 Programmers Manual 1960, p. 88f.
- ^ LISP 1.5 Programmers Manual 1962, p. 105.
- ^ Sutherland 1963.
- ^ a b Nygaard & Dahl 1978.
- ^ a b c Holmevik 1994.
- ^ Dahl 2004.
- ^ a b Meyer 2009.
- ^ Kay 1993.
- ^ FoxProの歴史: Foxprohistory.org
- ^ 1995年のVisual FoxPro 3.0 レビュー/ガイド: DFpug.de
- ^ Khurana, Rohit (1 November 2009). Object Oriented Programming with C++, 1E. ISBN 978-81-259-2532-3
- ^ マイナビTECH+: Delphiがトップ20位から脱落: 「Delphiは2001年6月にトップ20位入りを果たし、2000年代初頭には最も人気のある統合開発環境として広く使用されていた。」[1]
- ^ Wirth, Niklaus. From Modula to Oberon and the programming language Oberon (Report). ETH Technical Reports D-INFK. Vol. Band 82. Wiley.
- ^ 共通型システム|Microsoft Docs [2]
- ^ Booch, Grady (1986). Software Engineering with Ada. Addison Wesley. p. 220. ISBN 978-0-8053-0608-8 . "Perhaps the greatest strength of an object-oriented approach to development is that it offers a mechanism that captures a model of the real world."
- ^ Jacobsen, Ivar; Magnus Christerson; Patrik Jonsson; Gunnar Overgaard (1992). Object Oriented Software Engineering. Addison-Wesley ACM Press. pp. 43–69. ISBN 978-0-201-54435-0
- ^ 『型システム入門』オーム社、2013年、185頁。 18.10 selfを介したオープンな再帰
- ^ Neward, Ted (26 June 2006). “The Vietnam of Computer Science”. Interoperability Happens. 4 July 2006時点のオリジナルよりアーカイブ。2 June 2010閲覧。
- ^ Ambler, Scott (1 January 1998). “A Realistic Look at Object-Oriented Reuse”. drdobbs.com. 4 July 2010閲覧。
- ^ Shelly, Asaf (22 August 2008). “Flaws of Object Oriented Modeling”. Intel Software Network. 4 July 2010閲覧。
- ^ James, Justin (1 October 2007). “Multithreading is a verb not a noun”. techrepublic.com. 10 October 2007時点のオリジナルよりアーカイブ。4 July 2010閲覧。
- ^ Shelly, Asaf (22 August 2008). “HOW TO: Multicore Programming (Multiprocessing) Visual C++ Class Design Guidelines, Member Functions”. support.microsoft.com. 4 July 2010閲覧。
- ^ Robert Harper (17 April 2011). “Some thoughts on teaching FP”. Existential Type Blog. 5 December 2011閲覧。
- ^ Wirfs-Brock, Rebecca; Wilkerson, Brian (1989). “Object-Oriented Design: A Responsibility-Driven Approach”. ACM SIGPLAN Notices 24 (10): 74. doi:10.1145/74878.74885.
- ^ https://wiki.c2.com/?MichaelFeathers
出典
[編集]- Kindler, E.; Krivy, I. (2011). Object-Oriented Simulation of systems with sophisticated control. International Journal of General Systems. pp. 313–343.
- Lewis, John; Loftus, William (2008). Java Software Solutions Foundations of Programming Design (6th ed.). Pearson Education Inc.. ISBN 978-0-321-53205-3
- Kay, Alan; Ram, Stefan (23 July 2003). "Dr. Alan Kay on the Meaning of "Object-Oriented Programming"". www.purl.org. 2022年8月15日閲覧。
- McCarthy, J.; Brayton, R.; Edwards, D.; Fox, P.; Hodes, L.; Luckham, D.; Maling, K.; Park, D. et al. (March 1960). LISP I Programmers Manual. ボストン, マサチューセッツ: Artificial Intelligence Group, en:M.I.T. Computation Center and Research Laboratory. p. 88f. オリジナルの17 July 2010時点におけるアーカイブ。 . "In the local M.I.T. patois, association lists [of atomic symbols] are also referred to as "property lists", and atomic symbols are sometimes called "objects"."
- McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J.; Hart, swapnil d.; Levin, Michael I. (1962). LISP 1.5 Programmer's Manual. en:MIT Press. p. 105. ISBN 978-0-262-13011-0 . "Object — a synonym for atomic symbol"
- Sutherland, I. E. (1963年1月30日). “Sketchpad: A Man-Machine Graphical Communication System”. Technical Report No. 296, Lincoln Laboratory, Massachusetts Institute of Technology via Defense Technical Information Center (stinet.dtic.mil). 17 July 2019閲覧。
- Ali, Junade (2016-09-28) (英語). Mastering PHP Design Patterns (1 ed.). Birmingham, England, UK: Packt Publishing Limited. ISBN 978-1-78588-713-0
- Nygaard, Kristen; Dahl, Ole-Johan (1978-08-01). “Development of the SIMULA languages”. ACM SIGPLAN Notices (Association for Computing Machinery) 13 (8): 245–272. doi:10.1145/960118.808391.
- Dahl, Ole Johan (2004). “The Birth of Object Orientation: The Simula Languages”. From Object-Orientation to Formal Methods. Lecture Notes in Computer Science. 2635. pp. 15–25. doi:10.1007/978-3-540-39993-3_3. ISBN 978-3-540-21366-6 22 October 2021閲覧。.
- Kay, Alan (1993-03-01). “The Early History of Smalltalk”. ACM SIGPLAN Notices (Association for Computing Machinery) 28 (3): 69–95. doi:10.1145/155360.155364.
- Holmevik, Jan Rune (1994). “Compiling Simula: A historical study of technological genesis”. IEEE Annals of the History of Computing 16 (4): 25–37. doi:10.1109/85.329756.
- Meyer, Bertrand (2009). Touch of Class: Learning to Program Well with Objects and Contracts. Springer Science & Business Media. pp. 329. Bibcode: 2009tclp.book.....M. ISBN 978-3-540-92144-8
関連項目
[編集]システム
[編集]- CADES
- Common Object Request Broker Architecture (CORBA)
- Distributed Component Object Model
- Distributed Data Management Architecture
- Jeroo