検索結果
表示
このウィキでページ「T-ker」は見つかりませんでした。以下の検索結果も参照してください。
- {ran} \,T} あるいは、それと同値だが i n d T := dim ker T − d i m c o k e r T {\displaystyle \mathrm {ind} \,T:=\dim \ker T-\mathrm {dim} \,\mathrm {coker} \,T}…10キロバイト (1,456 語) - 2024年2月16日 (金) 13:53
- の部分集合である。したがって、Ker(f) は始域の集合 A における二項関係を定める。この関係は(構造と両立する)同値関係になる。核 Ker(f) が自明であるとは Ker(f) = Δ(A) なることをいう。ここで、Δ(A) は対角線集合 {(a, a) | a ∈ A} である。これは Ker(f) が定める…9キロバイト (1,541 語) - 2024年6月28日 (金) 04:53
- Kerkrade (オランダ語発音: [ˈspɔrtfəˌreːnəɣɪŋ ˈroːdaː ˌjyliˈjaːnaː ˌkɔmbiˈnaː(t)si ˈkɛr(ə)kˌraːdə];))は、オランダの南東部、リンブルフ州の都市ケルクラーデを本拠地とするサッカークラブチーム。読み方は「ローダ・イェー・セー」。…25キロバイト (793 語) - 2024年8月19日 (月) 14:57
- A の)核と呼ばれるもので、斉次方程式系の解空間が部分空間をなすという事実は核 ker A = ker f A := x ∈ V ∣ A x = 0 } {\displaystyle \ker A=\ker f_{A}:=x\in V\mid Ax=\mathbf {0} \}} が V…16キロバイト (2,708 語) - 2023年12月26日 (火) 04:56
- dim ker ( A B ) ≤ dim ker ( A ) + dim ker ( B ) {\displaystyle \dim \ker(AB)\leq \dim \ker(A)+\dim \ker(B)} に適用すればよい ^ 証明: 写像 C : ker ( A…13キロバイト (1,870 語) - 2023年7月1日 (土) 07:21
- T および V の元 v に対して、 I T , v = { p ∈ F [ t ] ∣ v ∈ Ker p ( T ) } = { p ∈ F [ t ] ∣ p ( T ) ( v ) = 0 } {\displaystyle I_{T,v}=\{p\in \mathbf {F} [t]\mid…5キロバイト (796 語) - 2022年6月28日 (火) 10:21
- 「oveRtaKerS」(オーバーテイカーズ)は、m.o.v.eの31枚目のシングル。SPEED MASTERに続く2枚目の他アーティストとのコラボレーション作品。 oveRtaKerS feat.RYUICHI KAWAMURA × SUGIZO 作詞:motsu、作曲・編曲:t-kimura 映画『ガクドリ』主題歌…1キロバイト (80 語) - 2020年4月11日 (土) 01:05
- Ai ki+1 となる最小の自然数 ki を求める Wi,j = im Ai j ∩ ker Ai とおく 部分空間の増大列 Wi,ki−1 ⊂ … ⊂ Wi,1 ⊂ Wi,0 = ker Ai に沿って ker Ai の基底 bi,1, …, bi,ti を求める bi,j ∈ Wi,di,j −…14キロバイト (2,514 語) - 2023年9月11日 (月) 14:46
- I DON'T MISS U - 田中聖 作詞:J∅KER / Axel-G 作曲・編曲:Alfred Tuohey / Thanh Bui / Wayne Milton Answer - 中丸雄一 作詞:Yuichi Nakamaru / t-oga 作曲・編曲:Yoshinao Mikami ※初回限定盤1のみ…5キロバイト (454 語) - 2023年9月26日 (火) 11:57
- → c o k e r T → 0. {\displaystyle 0\to \ker T\to V\to W\to \mathrm {coker} \,T\to 0.} これらは次のように解釈できる:解くべき線型方程式 T(v)=w が与えられると、 核は斉次方程式 T(v)=0 の解の空間であり、存在すれば、その次元は解の…8キロバイト (1,251 語) - 2023年9月11日 (月) 15:10
- の核や余核に関連した完全列 ker a ⟶ ker b ⟶ ker c ⟶ d coker a ⟶ coker b ⟶ coker c {\displaystyle \ker a\;{\color {Gray}\longrightarrow }\ker b\;{\color…31キロバイト (4,658 語) - 2023年9月10日 (日) 19:55
- と綴るのが通例のようである。 零空間は、ベクトル空間 V の部分空間である。さらに、 商空間 V/(Ker A) は、 A の像 R ( A ) := { y ∈ W ; ∃ x ∈ V s.t. y = A x } {\displaystyle R(A):=\{{\boldsymbol {y}}\in…3キロバイト (367 語) - 2023年5月28日 (日) 05:20
- 」のエンディングでは、脱退前だが、赤西のパートが流されていない。 Love yourself 〜君が嫌いな君が好き〜 作詞:ECO、Rap詞:J∅KER、作曲:Tatsugoo、編曲:Taku Yoshioka 亀梨和也主演 TBS系ドラマ『ヤマトナデシコ七変化♥』主題歌 THE D-MOTION…5キロバイト (348 語) - 2024年4月16日 (火) 10:48
- f(v)\in W\mid v\in V\ \}\subset W,} Ker ( f ) := { v ∈ V ∣ f ( v ) = 0 } ⊂ V {\displaystyle \operatorname {Ker} (f):=\{v\in V\mid f(v)=0\ \}\subset…19キロバイト (2,834 語) - 2024年11月13日 (水) 03:28
- } において、 I m f n − 1 = K e r f n {\displaystyle {\rm {Im\,}}f_{n-1}={\rm {Ker}}\,f_{n}} となるとき、系列は Xn において完全(exact)であるという。特に、次の事実が成り立つ: 系列 0 → M ′ → f M…7キロバイト (1,131 語) - 2024年11月27日 (水) 05:46
- ker f とモノ射 κ: ker f → G によって図式において表現されており(核は常にモノ射である)、図式の左下から右上に走る短完全列を完成させる。完全列を用いる慣習によって ker f から H と G/ker f へのゼロ射を描かなくて済む。 列が右分裂であれば(すなわち G/ker f…20キロバイト (2,282 語) - 2022年10月29日 (土) 02:58
- ker ( h ) g = ker ( h ) {\textstyle g^{-1}\ker(h)g=\ker(h)} はすぐにわかる)。また、像は H の部分群である。準同型 h が単射(しばしば 群単準同型 (group monomorphism) と呼ばれる)になることと ker(h)…12キロバイト (1,763 語) - 2024年1月25日 (木) 22:18
- をある体上のベクトル空間とし、T : V → W をある線型写像とする。このとき、T の階数は T の像の次元であり、T の退化次数は T の核の次元である。したがって、 dim (im T) + dim (ker T) = dim V が成立する。あるいは、同値であるが rank T + nullity T = dim…13キロバイト (2,039 語) - 2023年5月21日 (日) 01:09
- Theorem 22.2)。T: V → W を線型作用素とし、T の核 ker(T) は Tx = 0 となる x ∈ V 全体の成す集合とする。核 ker(T) は V の部分空間であり、第一同型定理は商空間 V/ker(T) が W における V の像 im(T)…8キロバイト (1,288 語) - 2021年9月18日 (土) 06:08
- より一般に、ノルム空間の間の写像 T: V → W が与えられたとき、同じようにこれが核の直交補空間上の等距写像となることを要求することができる。その ( ker T ) ⊥ → W {\displaystyle (\ker T)^{\perp }\to W}…23キロバイト (3,669 語) - 2024年3月7日 (木) 14:37
- ker 、 ker. 、 ker- 、 keř 、 keŕ 、 kêr 、 kër 、および ķer も参照。 IPA(?): /ˈkeːr/ フィンウゴル祖語 *kerä-「求める」 より フィンランド語 kerjätä「頼む」 コミ・ペルミャク語 корны (korny)「頼む」 ウドムルト語
- x = 0 ) = ker ( A − α I n ) {\displaystyle E(\alpha )=(\mathbf {x} \in \mathbb {C} ^{n}|(A-\alpha I_{n})\mathbf {x} =\mathbf {0} )=\ker(A-\alpha I_{n})}