コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

オイラーの分割恒等式

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数論組合せ論におけるオイラーの分割恒等式(オイラーのぶんかつこうとうしき)は、自然数整数)を「互いに異なる自然数に分割する方法の個数」(distinct partition; 異分割) と「奇数の自然数に分割する方法の個数」(odd partotion; 奇分割) が等しいことを示す恒等式である。[1]

分割の例

[編集]

例えば、自然数 8 を互いに異なる自然数に分割する方法

8 = 1+2+5
8 = 1+3+4
8 = 1+7
8 = 2+6
8 = 3+5
8 = 8

と奇数の自然数に分割する方法

8 = 1+1+1+1+1+1+1+1
8 = 1+1+1+1+1+3
8 = 1+1+1+5
8 = 1+1+3+3
8 = 1+7
8 = 3+5

の個数は等しく 6 である。

自然数 n をこのように分割する方法の個数を Q(n) で表すと、

Q(1) = 1, Q(2) = 1, Q(3) = 2, Q(4) = 2, Q(5) = 3, Q(6) = 4, Q(7) = 5, Q(8) = 6, Q(9) = 8, Q(10) = 10, … (オンライン整数列大辞典の数列 A9

などと続く。

母関数による表現

[編集]

オイラーは2種類の分割の方法の個数が等しいことを、母関数を用いて示した。自然数 n を互いに異なる自然数に分割する方法の数を Pd(n) とすると

である。また、自然数 n を奇数の自然数に分割する方法の数を Po(n) とすると

である。従って、オイラーの分割恒等式は

と書き表される。

証明

[編集]

母関数で書き表したものの左辺を変形すると右辺が得られる。

初等的な説明

[編集]

例として 8 を分割することを考える。ここで P を「異なる数による分割」に現れる一つの偶数をその半分の二つの整数の和にする変換U を「奇数のみの分割」に現れる同じ二つの整数を一つの偶数にする変換とすると

このように「異なる数による分割」の方法と「奇数のみの分割」の方法との間に1対1対応がつけられる。これはPとUが互いに逆の変換であることから導かれる。したがってそれらの方法の個数は互いに等しい。ただし上記の 1+7 や 3+5 のような「異なる数による分割」と「奇数のみの分割」の両方に属するような方法は自分自身に対応づけることとする。その場合は恒等写像 I で表した。

[編集]

参考文献

[編集]
  • Andrews, George E.; Eriksson, Kimmo (2004), Integer Partitions (2nd ed.), Cambridge University Press, ISBN 0-521-60090-1 
  • Hardy, G. H.; Wright, E. M. (2008) [1938], Heath-Brown, D. R.; Silverman, J. H.; Wiles, Andrew, eds., An Introduction to the Theory of Numbers (6th ed.), Oxford: Oxford University Press, ISBN 978-0-19-921985-8 

関連項目

[編集]

外部リンク

[編集]