ハルナック曲線定理
表示
実代数幾何学において、カール・アクセル・ハルナック(Carl Gustav Axel Harnack)に因み命名されたハルナック曲線定理 (Harnack's curve theorem) は、代数曲線が持つことのできる連結成分の可能な数を、曲線の次数によって記述する。実射影平面の中の次数 m の代数曲線では、成分の数 c は、
の範囲の中にある。最大数は次数 m の曲線の最大種数に 1 を足したもので、曲線が非特異なときに達成される。さらに、この範囲の中の任意の値は、実際に可能である。
実成分の最大数を持つ曲線を(最大 (maximum) の m から)M-曲線(M-curve)と呼ぶ。例えば、 のような、2つの成分を持つ3次の楕円曲線や、4つの成分を持つ4次のトロット曲線は、M-曲線の例である。
この定理はヒルベルトの第16問題の背景をなしている。
最近の発展では、ハルナック曲線は、そのアメーバが(ダイマー模型の特性曲線と呼ばれる)多項式 P のニュートン多面体と同じ面積を持つような曲線であり、さらに、すべてのハルナック曲線はあるダイマー模型のスペクトル曲線となっていることが示された (Mikhalkin 2001) (Kenyon, Okounkov & Sheffield (2006))。
参考文献
[編集]- D. A. Gudkov, The topology of real projective algebraic varieties, Uspekhi Mat. Nauk 29 (1974), 3–79 (Russian), English transl., Russian Math. Surveys 29:4 (1974), 1–79
- C. G. A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), 189–199
- G. Wilson, Hilbert's sixteenth problem, Topology 17 (1978), 53–74
- Kenyon, Richard; Okounkov, Andrei; Sheffield, Scott (2006). “Dimers and Amoebae”. Annals of Mathematics 163 (3): 1019-1056. url=http://arxiv.org/pdf/math-ph/0311005.pdf
- Mikhalkin, Grigory (2001), AMOEBAS OF ALGEBRAIC VARIETIES url=http://arxiv.org/pdf/math/0108225.pdf