英文维基 | 中文维基 | 日文维基 | 草榴社区
このページは数式テストを行うのに使っているサブページです。
あ、 lim h → 0 {\displaystyle \lim _{h\to 0}} が付いてません…。
d d x ln ( x ) = ln ( x + h ) − ln ( x ) h {\displaystyle {\frac {d}{dx}}\ln \left(x\right)={\frac {\ln \left(x+h\right)-\ln \left(x\right)}{h}}}
ln ( x + h ) − ln ( x ) h = ln ( x + h x ) h {\displaystyle {\frac {\ln \left(x+h\right)-\ln \left(x\right)}{h}}={\frac {\ln \left({\frac {x+h}{x}}\right)}{h}}}
ln ( x + h x ) h = 1 h ln ( 1 + h x ) = 1 x x h ln ( 1 + h x ) = 1 x ln ( 1 + h x ) ( x h ) = 1 x l n ( e ) = 1 x {\displaystyle {\frac {\ln \left({\frac {x+h}{x}}\right)}{h}}={\frac {1}{h}}\ln \left(1+{\frac {h}{x}}\right)={\frac {1}{x}}{\frac {x}{h}}\ln \left(1+{\frac {h}{x}}\right)={\frac {1}{x}}\ln \left(1+{\frac {h}{x}}\right)^{\left({\frac {x}{h}}\right)}={\frac {1}{x}}ln\left(e\right)={\frac {1}{x}}}
lim x → e 1 x − e ∫ e x e t ln ( t ) d t = ( 1 ) {\displaystyle \lim _{x\to e}{\frac {1}{x-e}}\int _{e}^{x}e^{t}\ln(t)\,dt=(1)}
これは、 x − e = h {\displaystyle x-e=h} として、
∫ e x ln ( x ) d x = F ( x ) , ( F ( x ) ) ′ = e x ln ( x ) {\displaystyle \int e^{x}\ln(x)\,dx=F\left(x\right)\quad ,\quad \left(F\left(x\right)\right)^{\prime }=e^{x}\ln(x)} と定めると、 ( 1 ) = lim h → 0 1 h ∫ e e + h e t ln ( t ) d t = lim h → 0 F ( e + h ) − F ( e ) h {\displaystyle (1)=\lim _{h\to 0}{\frac {1}{h}}\int _{e}^{e+h}e^{t}\ln(t)\,dt=\lim _{h\to 0}{\frac {F\left(e+h\right)-F\left(e\right)}{h}}}
となり、これは微分係数の定義であるから、 ( 1 ) = ( F ( e ) ) ′ = e e ln ( e ) = e e {\displaystyle (1)=\left(F\left(e\right)\right)^{\prime }=e^{e}\ln(e)=e^{e}}
部分積分の証明のつもりだったと思うんだけど…。
{ f ( x ) ⋅ g ( x ) } ′ = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) {\displaystyle \{f\left(x\right)\cdot g\left(x\right)\}^{\prime }=f^{\prime }\left(x\right)\cdot g\left(x\right)+f\left(x\right)\cdot g^{\prime }\left(x\right)}
両辺を積分してもこれは成り立つ。
∫ { f ( x ) ⋅ g ( x ) } ′ d x = f ( x ) ⋅ g ( x ) = ∫ f ′ ( x ) ⋅ g ( x ) d x + ∫ f ( x ) ⋅ g ′ ( x ) d x {\displaystyle \int \{f\left(x\right)\cdot g\left(x\right)\}^{\prime }\,dx=f\left(x\right)\cdot g\left(x\right)=\int f^{\prime }\left(x\right)\cdot g\left(x\right)\,dx+\int f\left(x\right)\cdot g^{\prime }\left(x\right)\,dx}
[ f ( x ) ⋅ g ( x ) ] a b = ∫ a b f ′ ( x ) ⋅ g ( x ) d x + ∫ a b f ( x ) ⋅ g ′ ( x ) d x {\displaystyle [f\left(x\right)\cdot g\left(x\right)]_{a}^{b}=\int _{a}^{b}f^{\prime }\left(x\right)\cdot g\left(x\right)\,dx+\int _{a}^{b}f\left(x\right)\cdot g^{\prime }\left(x\right)\,dx}
入れ替えて、
∫ a b f ′ ( x ) ⋅ g ( x ) d x = [ f ( x ) ⋅ g ( x ) ] a b − ∫ a b f ( x ) ⋅ g ′ ( x ) d x {\displaystyle \int _{a}^{b}f^{\prime }\left(x\right)\cdot g\left(x\right)\,dx=[f\left(x\right)\cdot g\left(x\right)]_{a}^{b}-\int _{a}^{b}f\left(x\right)\cdot g^{\prime }\left(x\right)\,dx}
これを用いると、 ∫ log x d x {\displaystyle \int \log x\,dx} のような積分が可能になる。
問2間違ってたから訂正・・・
∫ f ′ ( x ) x g ( x ) d x {\displaystyle \int _{}f^{\prime }\,(x)xg(x)dx}
A = ( a 11 a 12 a 13 ⋯ a 1 ( n − 1 ) a 1 n a 21 a 22 ⋯ ⋯ ⋯ a 2 n ⋮ ⋱ ⋮ a n 1 ⋯ ⋯ ⋯ ⋯ a n n ) {\displaystyle A={\begin{pmatrix}a_{11}&a_{12}&a_{13}&\cdots &a_{1(n-1)}&a_{1n}\\a_{21}&a_{22}&\cdots &\cdots &\cdots &a_{2n}\\\vdots &&\ddots &&&\vdots \\a_{n1}&\cdots &\cdots &\cdots &\cdots &a_{nn}\\\end{pmatrix}}}
面倒なので以下 A = { a i j } ( 1 ≤ i , j ≤ n ) {\displaystyle A=\{a_{ij}\}(1\leq i,j\leq n)} の様に表示する。ベクトルも同様。 x → {\displaystyle {\overrightarrow {x}}} は、 x {\displaystyle \mathbf {x} } と表記。
x 0 = { x 0 i } ( 1 ≤ i ≤ n ) , x ( s ) = { x ( s ) i } ( 1 ≤ i ≤ n ) , y = { y i } ( 1 ≤ i ≤ n ) , b = { b i } ( 1 ≤ i ≤ n ) {\displaystyle \mathbf {x} _{0}=\{x_{0i}\}(1\leq i\leq n)\quad ,\quad \mathbf {x} _{\left(s\right)}=\{x_{\left(s\right)i}\}(1\leq i\leq n)\quad ,\quad \mathbf {y} =\{y_{i}\}(1\leq i\leq n)\quad ,\quad \mathbf {b} =\{b_{i}\}(1\leq i\leq n)} として、 A x 0 = { ∑ i = 1 n ( a k i ⋅ x 0 i ) } ( 1 ≤ k ≤ n ) = 0 {\displaystyle A\mathbf {x} _{0}=\{\sum _{i=1}^{n}(a_{ki}\cdot x_{0i})\}(1\leq k\leq n)=\mathbf {0} } A x ( s ) = { ∑ i = 1 n ( a k i ⋅ x ( s ) i ) } ( 1 ≤ i ≤ n ) = b , A y = { ∑ i = 1 n ( a k i ⋅ y i ) = b {\displaystyle A\mathbf {x} _{\left(s\right)}=\{\sum _{i=1}^{n}(a_{ki}\cdot x_{\left(s\right)i})\}(1\leq i\leq n)=\mathbf {b} \quad ,\quad A\mathbf {y} =\{\sum _{i=1}^{n}(a_{ki}\cdot y_{i})=\mathbf {b} } である。 t ∈ R {\displaystyle t\in \mathbb {R} } として、 t A x 0 = A t x 0 = { ∑ i = 1 n ( t ⋅ a k i ⋅ x 0 i ) } ( 1 ≤ k ≤ n ) = { t ⋅ 0 } = 0 {\displaystyle tA\mathbf {x} _{0}=At\mathbf {x} _{0}=\{\sum _{i=1}^{n}(t\cdot a_{ki}\cdot x_{0i})\}(1\leq k\leq n)=\{t\cdot 0\}=\mathbf {0} } また、 A ( x ( s ) + t x 0 ) {\displaystyle A\left(\mathbf {x} _{\left(s\right)}+t\mathbf {x} _{0}\right)} = { ∑ i = 1 n a k i ⋅ ( x ( s ) i + x 0 i ) } {\displaystyle =\{\sum _{i=1}^{n}a_{ki}\cdot (x_{\left(s\right)i}+x_{0i})\}} = { ∑ i = 1 n ( a k i ⋅ x ( s ) i + a k i ⋅ x 0 i ) } {\displaystyle =\{\sum _{i=1}^{n}(a_{ki}\cdot x_{\left(s\right)i}+a_{ki}\cdot x_{0i})\}} = { b i + 0 } ( 1 ≤ i ≤ n ) = { b i } = b {\displaystyle =\{b_{i}+0\}(1\leq i\leq n)=\{b_{i}\}=\mathbf {b} } つまり、 y = x ( s ) + t x 0 ( t ∈ R ) {\displaystyle \mathbf {y} =\mathbf {x} _{\left(s\right)}+t\mathbf {x} _{0}(t\in \mathbb {R} )}