利用者:加藤勝憲/真空管ソケット
真空管ソケットは、真空管(電子バルブ)を差し込むことができる電気ソケットで、真空管を所定の位置に保持し、各ピンに回路にはんだ付けできる端子を提供する。ソケットは真空管を1つの方向にしか差し込めないように設計されている。ほとんどの真空管電子機器では、簡単に取り外しや交換ができるようにするために使用されていた。真空管機器が一般的だった頃、ドラッグストアなどの小売店には真空管テスターがあり、交換用の真空管が売られていた。一部のニキシー管もソケットを使うように設計されていた。
真空管時代を通じて、技術の発展に伴い、時には世界の異なる地域で、多くの真空管ベースとソケットが使用されるようになった[1][2]。ソケットは普遍的なものではなく、異なる真空管が同じソケットに機械的に適合することもあるが、正しく動作しなかったり、破損したりする可能性がある。
真空管ソケットは通常、板金シャーシの穴に取り付けられ、ワイヤーやその他の部品はソケット下面のラグに手作業ではんだ付けされていた。1950年代にはプリント基板が登場し、接点をプリント配線トラックに直接はんだ付けできる真空管ソケットが開発された。ソケットの底面、あるいはそれに相当するチューブの底面から見て、ピンはインデックス・ノッチまたはギャップから時計回りに番号付けされていた。
Tube sockets were typically mounted in holes on a sheet metal chassis and wires or other components were hand soldered to lugs on the underside of the socket. In the 1950s, printed circuit boards were introduced and tube sockets were developed whose contacts could be soldered directly to the printed wiring tracks. Looking at the bottom of a socket, or, equivalently, a tube from its bottom, the pins were numbered clockwise, starting at an index notch or gap, a convention that has persisted into the integrated circuit era.
1930年代の真空管は、コントロール・グリッドへの接続を、真空管上部の金属製トップ・キャップから行うことが多かった。これは、リード線が付いたクリップを使って接続されていた。例えば、6A7ペンタグリッドコンバーターがそうである。その後、いくつかの真空管、特に6DQ6のような無線周波数(RF)電力増幅器やテレビの水平偏向増幅器として使用される真空管は、プレートまたは陽極リードがエンベロープを突き抜けていた。どちらの場合も、これにより真空管の出力回路を入力(グリッド)回路からより効果的に絶縁することができた。プレートをキャップまで引き出した真空管の場合、これによってプレートをより高い電圧(3A3などのカラーテレビ用整流器や高電圧レギュレーター管の場合、26,000ボルト以上)で動作させることもできた。いくつかの珍しい真空管は、グリッドとプレートの両方にキャップを持っていた。
In the 1930s, tubes often had the connection to the control grid brought out through a metal top cap on the top of the tube. This was connected by using a clip with an attached wire lead. An example would be the 6A7 pentagrid converter. Later, some tubes, particularly those used as radio frequency (RF) power amplifiers or horizontal deflection amplifiers in TV sets, such as the 6DQ6, had the plate or anode lead protrude through the envelope. In both cases this allowed the tube's output circuitry to be isolated from the input (grid) circuit more effectively. In the case of the tubes with the plate brought out to a cap, this also allowed the plate to run at higher voltages (over 26,000 volts in the case of rectifiers for color television, such as the 3A3, as well as high-voltage regulator tubes.) A few unusual tubes had caps for both grid and plate; the caps were symmetrically placed, with divergent axes.
最初の真空管
[編集]1911年頃のDeforest Spherical Audion[3]のような初期の真空管は、ヒーターに一般的な電球型エジソンソケットを使用し、他の素子にはフライングリードを使用していた。他の真空管は、1915年のCunningham AudioTron[4]やDeforest Oscillion[5]のように、全ての接点にフライングリードを直接使用していた。 米海軍のStable Element Mark 6のサーボに使用されたC6A型キセノンサイロトロンは、グリッドとアノードの接続のために、モーグルねじのベースと上部にL字型の硬いワイヤを持っていた[6]。
The earliest tubes, like the Deforest Spherical Audion[3] from c. 1911, used the typical light bulb Edison socket for the heater, and flying leads for the other elements. Other tubes directly used flying leads for all of their contacts, like the Cunningham AudioTron from 1915,[4] or the Deforest Oscillion.[5] Type C6A xenon thyratrons, used in servos for the U.S. Navy Stable Element Mark 6, had a mogul screw base and L-shaped stiff wires at the top for grid and anode connections.[6] Mating connectors were machined pairs of brass blocks with clamping screws, attached to flying leads (free hanging).
Early bases
[編集]チューブが普及し、新しい電極が追加されると、より多くの接続が必要になった。この必要性を考慮して、特別に設計されたベースが作られた。しかし、世界は第一次世界大戦に苦しんでおり、新しいエレクトロニクス技術が生まれたばかりであったため、設計の標準化にはほど遠かった。通常、各社は独自の真空管とソケットを持っており、他社の真空管との互換性はなかった。1920年代初頭までに、この状況はようやく変わり始め、いくつかの標準ベースが作られた。それらは、3本から7本までの突起を持つベース(セラミック製、金属製、ベークライト製など)で構成され、突起の分布が規則的でなかったり、突起の1つか2つが他のものより直径が大きかったりして、特定の位置にしかチューブを挿入できないようになっていた。基部の側面にある銃剣に頼ることもあった。これらの例としては、ごく一般的なアメリカのUX4、UV4、UY5、UX6、ヨーロッパのB5、B6、B7、B8、C7、G8Aなどがある。米国の真空管は通常、円形配列で4~7本のピンを持ち、ヒーター接続用に隣接する大きなピンのペアがあった。
交流(AC)ライン/マイン電源のラジオが開発される前、いくつかの4ピン管(特に非常に一般的なUX-201A('01A))は円筒形のベースの側面にバヨネットピンが付いていた。ソケットはそのピンを使って真空管を保持し、時計回りに少し回すと挿入が完了した。リーフスプリングは、基本的にすべて同じ平面にあり、ピンの底を上方に押し上げ、バヨネットピンの係合も維持していた。
最初の熱陰極CRT、ウェスタン・エレクトリック224-Bは、標準的な4ピンバヨネット・ベースで、バヨネット・ピンはライブ接続だった。(有効ピンは5本):これは静電偏向ガス集中型で、ダイオード銃とシングルエンド偏向を備えていた。陽極と他の2枚のプレートは共通だった)。
An early exception to these types of bases is the Peanut 215, which instead of using prongs had a tiny bayonet base with four drop-like contacts. Another exception is the European Side Contact series commonly known as P, which instead of using a prong, relied on side contacts at 90 degrees from the tube axis with four to twelve contacts.
Octal
[編集]In April 1935, the General Electric Company introduced a new eight-pin tube base with their new metal envelope tubes. The new base became known as the octal base. The octal base provided one more conductor with a smaller overall size of the base than the previous line of U. S. tube bases which had provided a maximum of seven conductors. Octal bases, as defined in IEC 60067, diagram IEC 67-I-5a, have a 45-degree angle between pins, which form a 17.45 mm (0.687 in) diameter circle around a 7.82 mm (0.308 in) diameter keyed post (sometimes called a spigot) in the center. Octal sockets were designed to accept octal tubes, the rib in the keyed post fitting an indexing slot in the socket so the tube could only be inserted in one orientation.
When used on metal tubes, pin 1 was always reserved for a connection to the metal shell, which was usually grounded for shielding purposes. This reservation prevented tubes such as the 6SL7/6SN7 dual triodes from being issued with metal envelopes, as such valves need three connections (cathode, grid, anode) for each triode (making six total) plus two connections for the paralleled heaters. The octal base soon caught on for glass tubes, where the large central post could also house and protect the "evacuation tip" of the glass tube. The eight available pins allowed more complex tubes than before, such as dual triodes, to be constructed. The glass envelope of an octal base tube was cemented into a bakelite or plastic base with a hollow post in the center, surrounded by eight metal pins. The wire leads from the tube were soldered into the pins, and the evacuation tip was protected inside the post.
Matching plugs were also manufactured that let tube sockets be used as eight-pin electrical connectors; bases from a discarded tubes could be salvaged for this purpose. Octal sockets were used to mount other components, particularly electrolytic capacitor assemblies[7] and electrical relays; octal-mount relays are still common.
Most octal tubes following the widespread European designation system have penultimate digit "3" as in ECC34 (full details in the Mullard–Philips tube designation article). There is a different, totally obsolete, pre-world-war-II German octal type.[要出典][citation needed]
Octal and miniature tubes are still in use in tube-type audio hi-fi and guitar amplifiers. Relays were historically manufactured in a vacuum tube form,[8] and industrial-grade relays continue to use the octal base for their pinout.[9][10]
Loctal
[編集]A variant of the octal base, the B8G loctal base or lock-in base (sometimes spelled "loktal" — trademarked by Sylvania), was developed by Sylvania for ruggedized applications such as automobile radios. Along with B8B (a British designation out of date by 1958), these eight-pin locking bases are almost identical and the names usually taken as interchangeable (although there are some minor differences in specifications, such as spigot material and spigot taper, etc.).[11] The pin geometry was the same as for octal, but the pins were thinner (although they will fit into a standard octal socket, they wobble and do not make good contact), the base shell was made of aluminium, and the center hole had an electrical contact that also mechanically locked (hence "loctal") the tube in place. Loctal tubes were only used widely by a few equipment manufacturers, most notably Philco, which used the tubes in many table radios. Loctal tubes have a small indexing mark on the side of the base skirt; they do not release easily from their sockets unless pushed from that side. Because the pins are actually the Fernico or Cunife lead-out wires from the tube, they are prone to intermittent connections caused by the build-up of electrolytic corrosion products due to the pin being of a different metallic composition to the socket contact.
The loctal tube's structure was supported directly by the connecting pins passing through the glass "button" base. Octal tube structures were supported on a glass "pinch", formed by heating the bottom of the envelope to fusing temperature, then squeezing the pinch closed. Sealing the pinch embedded the connecting wires in the pinch's glass and gave a vacuum-tight seal. The connecting wires then passed through the hollow base pins, where they were soldered to make permanent connections.
Loctal tubes had shorter connecting lengths between the socket pins and the internal elements than did their octal counterparts. This allowed them to operate at higher frequencies than octal tubes. The advent of miniature "all-glass" seven- and nine-pin tubes overtook both octals and loctals, so the loctal's higher-frequency potential was never fully exploited.
Loctal tube type numbers in the USA typically begin with "7" (for 6.3-volt types) or "14" for 12.6-volt types. This was fudged by specifying the heater voltage as nominally 7 or 14 volts so that the tube nomenclature fitted.[12] Battery types (mostly 1.4-volt) are coded "1Lxn", where x is a letter and "n" a number, such as "1LA4". Russian loctals end in L, e.g. 6J1L. European designations are ambiguous; all B8G loctals have numbers either in the range:
- 20–29, (such as EBL21, ECH21, EF22) except for early tubes in the series: DAC21, DBC21, DCH21, DF21, DF22, DL21, DLL21, DM21 which have either B9G or octal bases, the change to Sylvania's locktal standard coming in 1942[13]
- or 50–59 (special bases, including the European 9-pin lock-in base), but other types are in the same range (e.g. while EF51 is B8G loctal, the EF55 is 9-pin loctal, B9G, and the EL51 has a side-contact P8A base).
Other loctals
[編集]- Nine-pin loctal bases, B9G, include the 1938 Philips EF50, EL60 and some type numbers in the European 20–29 and 50–59 range;
- There is a different "loctal Lorenz" in the Mullard–Philips tube designation .
Miniature tubes
[編集]Efforts to introduce small tubes into the marketplace date from the 1920s, when experimenters and hobbyists made radios with so-called peanut tubes like the Peanut 215 mentioned above. Because of the primitive manufacturing techniques of the time, these tubes were too unreliable for commercial use.
RCA announced new miniature tubes in <i id="mwrQ">Electronics</i> magazine, which proved reliable. The first ones, such as the 6J6 ECC91 VHF dual triode, were introduced in 1939. The bases commonly referred to as "miniature" are the seven-pin B7G type, and the slightly later nine-pin B9A (Noval). The pins are arranged evenly in a circle of eight or ten evenly spaced positions, with one pin omitted; this allows the tube to be inserted in only one orientation. Keying by omitting a pin is also used in 8- (subminiature), 10-, and 12-pin (Compactron) tubes (a variant 10-pin form, "Noval+1", is basically a nine-pin socket with an added center contact).
As with loctal tubes, the pins of miniature tube are stiff wires protruding through the bottom of the glass envelope which plug directly into the socket. However, unlike all their predecessors, miniature tubes are not fitted with separate bases; the base is an integral part of the glass envelope. The pinched-off air evacuation nub is at the top of the tube, giving it its distinctive appearance. More than one functional section can be included in a single envelope; a dual triode configuration is particularly common. Seven- and nine-pin tubes were common, though miniature tubes with more pins, such as the Compactron series, were later introduced, and could fit up to three amplifying elements. Some miniature tube sockets had a skirt that mated with a cylindrical metal electrostatic shield that surrounded the tube, fitted with a spring to hold the tube in place if the equipment was subject to vibration. Sometimes the shield was also fitted with thermal contacts to transfer heat from the glass envelope to the shield and act as a heat sink, which was considered to improve tube life in higher power applications.
Electrolytic effects from the differing metal alloys used for the miniature tube pins (usually Cunife or Fernico) and the tube base could cause intermittent contact due to local corrosion, especially in relatively low current tubes, such as were used in battery-operated radio sets. Malfunctioning equipment with miniature tubes can sometimes be brought back to life by removing and reinserting the tubes, disturbing the insulating layer of corrosion.
Miniature tubes were widely manufactured for military use during World War II, and also used in consumer equipment. The Sonora Radio and Television Corporation produced the first radio using these miniature tubes, the "Candid", in April 1940.[14] In June 1940 RCA released its battery-operated Model BP-10, the first superheterodyne receiver small enough to fit in a handbag or coat pocket. This model had the following tube lineup: 1R5 — pentagrid converter; 1T4 — I.F. amplifier; 1S5 — Detector/AVC/AF Amplifier; 1S4 — Audio Output. The BP-10 proved so popular that Zenith, Motorola, Emerson, and other radio manufacturers produced similar pocket radios based on RCA's miniature tubes.[14] Several of these pocket radios were introduced in 1941 and sold until the suspension of radio production in April 1942 for the duration of World War II.[15]
After the war miniature tubes continued to be manufactured for civilian use, regardless of any technical advantage, as they were cheaper than octals and loctals.
Miniature seven-pin base
[編集]The B7G (or "small-button" or "heptal") seven-pin miniature tubes are smaller than Noval, with seven pins arranged at 45-degree spacing in a 9.53 mm (3/8th inch) diameter arc, the "missing" pin position being used to position the tube in its socket (unlike octal, loctal and rimlock sockets). Examples include the 6AQ5/EL90 and 6BE6/EK90. European tubes of this type have numbers 90-99, 100-109, 190-199, 900-999. A few in the 100-109 series have unusual, non-B7G bases, e.g., Wehrmacht base.
Noval base
[編集]The nine-pin miniature Noval B9A base, sometimes called button 9-pin, B9-1, offered a useful reduction in physical size compared to previous common types, such as octal (especially important in TV receivers where space was limited), while also providing a sufficient number of connections (unlike B7G) to allow effectively unrestricted access to all the electrodes, even of relatively complex tubes such as double triodes and triode-hexodes. It could also provide multiple connections to an electrode of a simpler device where useful, as in the four connections to the grid of a conventional grounded-grid UHF triode, e.g., 6AM4, to minimise the deleterious effects of lead inductance on the high-frequency performance.
This base type was used by many of the United States and most of the European tubes, e.g., 12AX7-ECC83, EF86 and EL84, produced commercially towards the end of the era before transistors largely displaced their use.
The IEC 67-I-12a specification calls for a 36-degree angle between the nine pins of 1.016 mm thickness, in an arc of diameter 11.89 mm.
European tubes of this type have numbers 80-89, 180-189, 280-289, 800-899, 8000-8999.
Duodecar base
[編集]The Duodecar B12C base (IEC 67-I-17a) has 12 pins in a 19.1 mm diameter circle and dates from 1961. It was also called the Compactron T-9 construction/E12-70 base It is generally similar in form to a Noval socket, but larger. In the center is a clearance hole for a tube evacuation pip, which is typically on the bottom of a Compactron tube. (It should not be confused with the similar-sounding but differently sized Duodecal B12A base.)
The Rimlock (B8A) base is an eight-pin design with a pin circle diameter close to Noval, and uses a nub on the side of the envelope to engage with a guide and retaining spring in the socket wall. This provides pin registration (since the pins are equi-spaced) and also a fair degree of retention. Early tubes with this base type typically had a metal skirt around the lower ~15mm of the envelope to match the socket wall, and this offered a degree of built-in screening, but these were fairly soon replaced by "skirtless" versions, which had a characteristic widening in the glass to compensate physically for the absence of the skirt. In the European naming scheme, rimlock tubes are numbered in the ranges 40-49, 110-119 (with exceptions), and 400-499, e.g., EF40. Although virtually unknown elsewhere, this was a very common base type in European radios of the late 1940s through the 1950s, but was eventually displaced by the ubiquitous B7G and Noval (B9A) base types.
By 1935 new tube technologies were required for the development of radar and telecommunications. UHF requirements severely limited the existing tubes, so radical ideas were implemented which affected how these tubes connected to the host system. Two new bases appeared, the acorn tube and the lighthouse tube, both solving the same problems but with different approaches. Thompson, G.M. Rose, Saltzberg and Burnside from RCA created the acorn tube by using far smaller electrodes, with radial short connections.[16] A different approach was taken by the designers of the lighthouse tube, such as the octal-base 2C43, which relied on using concentric cylindrical metal contacts in connections that minimized inductance, thus allowing a much higher frequency.
Nuvistors were very small, reducing stray capacitances and lead inductances. The base and socket were so compact that they were widely used in UHF TV tuners. They could also be used in small-signal applications at lower frequencies, as in the Ampex MR-70, a costly studio tape recorder whose entire electronics section was based on nuvistors.
Other socket styles
[編集]There are many other socket types, of which a few are:
- Decal B10B base (IEC 67-I-41a) 10 pins with 1.02 mm diameter in an 11.89 mm diameter circle, e.g. PFL200
- Decar B10G base (IEC E10-73) A 10th pin added to the center of a standard 9-pin miniature base, e.g. 6C9
- Magnoval B9D base (IEC 67-I-36a) 9 pins with 1.27 mm diameter in a 17.45 mm pin circle diameter arc, e.g. EL503, EL509, PD500, etc. - not to be confused with...
- Novar B9E base, 9 pins with 1.02 mm diameter in a 17.45 mm pin circle diameter arc, one of several Compactron types, which looks similar to Magnoval (but a Novar tube in a Magnoval socket will not make good pin contact, and a Magnoval tube in a Novar socket may damage the socket).
- Sub-Magnal B11A base (American), 11-pins. Also used as industrial relay socket and HV power supplies. Amphenol / WirePro (WPI) / Eaton 78-series, Socket (female) part number: 78-S-11. Matching Plug (male) is part number: 86-CP-11
- Neo Eightar base (IEC 67-I-31a) 8 pins in a 15.24 mm diameter circle
- 5-pin sub-miniature wire-ended B5A base (no socket used; e.g. EA76)
A remarkably wide variety of tube and similar sockets is listed and described, with some informal application notes, at a commercial site, Pacific T.V.,[17] including nuvistor, eight-pin subminiature, vidicon, reflex klystron, nine-pin octal-like, 10-pin miniature (two types), 11-pin sub-magnal, diheptal 14-pin, and many display tubes such as Nixies and vacuum fluorescent types (and even more). As well, each socket has a link to a clear, high-quality picture.
Some subminiature tubes with flexible wire leads all exiting in the same plane were connected by subminiature inline sockets.
Some low-power reflex klystrons such as the 2K25 and 2K45 had small-diameter rigid coaxial outputs parallel to octal base pins. To accommodate the coax, one contact was replaced by a clearance hole.
Vacuum tubes for high-power applications often required custom socket designs. A jumbo four-prong socket was used for various industrial tubes. A specialized seven-pin socket (Septar or B7A), with all pins in a circle with one pin wider than the others, was used for transmitting tubes. Subminiature tubes with long wire leads, introduced in the 1950s, were often soldered directly to printed circuit boards. Sockets were made for early transistors, but quickly fell out of favor as transistor reliability became established. This also happened with early integrated circuits; IC sockets later became used only for devices that may need to be upgraded.
Summary of base details
[編集]Common Name | Standard Name | Other names | Base Pins | Pin Layout | Pin thickness | Specification | Period | Examples | European / Pro Electron numeric range |
---|---|---|---|---|---|---|---|---|---|
Pee-Wee | B3A | US Pee Wee 3p | 3 | 08.7mm triangle with pins 1&3 closest[19] | 2.36mm[20] | 1937 - | ZA1004 | - | |
Mazda subminiature | B3G[21] | European special all-glass miniature | 3 (+top) | 06.0mm line with 3mm spacing | 1mm | Mazda | 1937 - | D1, EA50[22] | - |
European 3-pin | H3A | British 3-pin, Eu-3 (or B4, ignoring pin 4) |
3 | 16mm isosceles triangle, greatest distance between pins 2 & 3 | 3.2mm | 1920s to early 1930s (superseded by Octal and P8) |
RE4120, 1832[23] | - | |
UV4 | B4B | WD-4-Pin | 4 | 09.8mm rectangle with large pin 2 (usually anode) | 2.3mm x3 3.1mm (pin 2) |
1914 - 1920's (superseded by UX4) |
WD-11 | - | |
UX4 | U4A | American 4-pin base with or without bayonet pin | 4 | 11.9mm rectangle with thicker pins 1 & 4. Superseded the UV4 base |
3.2mm (pins 2&3) 4.0mm (pins 1&4) |
A4-10 | 1920s - 1930s (mostly superseded by Octal, but still used for some currently produced directly heated triodes) |
A-P Oscillator (1920),[24] 2A3, 300B, B405, X99, WW313A (1938), 866A | - |
B4 | A4A | British 4-pin, A4, European 4-pin | 4 | 16.25mm kite | 3.2mm | 1915[25] to early 1930s (superseded by Octal and P8) |
B405, BL2, R-type | - | |
UY5 UX5 |
U5A B5C |
US 5-contact American Small 5-pin, USS5 |
5 | 19mm (3/4") circle, 3x60° between pins 1,2 and 4,5,1, 2x90° between pins 2,3,4 |
3.? | A5-11 | 1920s | UY227, 2E22, 1D4, 49, 807 | - |
B5 | O5A | British 5-pin, European 5 -pin, Europa | 5 | 16.25mm kite; B4 with central 5th pin added a B5 socket will accept European 3-pin (H3A) and 4-pin (A4A) tubes |
3.2mm | 1928[26] to early 1930s (superseded by Octal and P8) |
B443 | - | |
UX6[27] | U6A | US 6-pin | 6 | 19mm (3/4") circle, 6x60° |
3.2mm x4, 3.9mm (pins 1 & 6) | 1930's (superseded by Octal) |
1F6, 2A5 | - | |
B7 | M7A | British 7-pin | 7 | 23.1mm x 18.2mm oval[28] | 3.2mm | 1930s (ultimately superseded by Octal) | AC3/Pen, TDD4, AL60, 18013 | - | |
UX7 | U7A | US 7-pin small | 7 | 19mm (3/4") circle, 3x52°,4x51° |
3.2mm x5, 3.9mm (pins 1&7) |
1930's (superseded by Octal) |
2B7, 6A7 | - | |
Septar | B7A | 7 | 26mm circle | 2.7mm x6, 4.0mm | 6C33, 829B, 3C33, 3E29, 832A, 5894, FU-29, GZ67-C | ||||
Miniature 7-Pin | B7G | Miniature, Button, Mi-7 | 7 | 09.53mm (3/8") circle, 6x45° then 90° between pins 7 & 1 |
1.016mm | IEC 67-I-10a | 1939 - present | 1S4/DL91, 6AQ5, 6X4 | 90-99, some 100-109, 190-199, 900-999 |
Transcontinental | P8A | P-Type, Ct8, Philips 8, Side-contact 8 | 8 | 29.5mm circle of side-contact pins, 3x30° (pins 1-4), 5x54° |
Side-contact | Philips | 1930s | AL3 | 1-9 usually |
Octal | K8A[29] | IO, International Octal, A08, American octal base, Oc-8 | 8 | 17.45mm (11/16") circle, equal 45° spacing, 7.8mm spigot | 2.36mm | originally: RCA IEC 67-I-5a |
1935 - present | 6CA7/EL34, 6L6/5881, 6SN7, 6V6GT, KT63/KT66/KT77/KT88/KT90, 6550, 7591 | 3G, 30-39, 300-399 |
Mazda Octal[30] | K8B | MO8, Octal-8 GB, MO[30] | 8 | 18.5mm circle, 55,5° between pin 1 and 8, 43,5° between the other pins,[31] 8.7mm spigot | 2.36mm | Mazda | 1938 - ? (short-lived) |
ARP12, AR8, SP42, ATP4 [31] | - |
Loctal | B8G[32] or B8B[33] |
8-pin Loktal, Lo-8, Locking Octal | 8 | 17.45mm (11/16") circle, equal 45° spacing, 6.7mm spigot | 1.3mm | Sylvania | 1939 | 1LN5, EF22, ECH71 | 20-29 and some others |
Rimlock | B8A | European 8-pin Miniature base, Ri-8 | 8 | 11.5mm (0.453") circle, 45° | 1.015mm | IEC 67-I-11b | 1940s quickly edged-out by Noval, etc |
6CU7/ECH42,EL41 | 40-49 |
Loctal-9pin | B9G[34] | 9-pin Loctal, Lo-9 | 9 | 21.0mm (13/16") circle, equal 40° spacing, spigot connected to can |
1.3mm | Philips | 1938[35] announced Sept. 1938 and available to Pye; general availability early 1939.[36] |
EC52 EF50 EF54 EL60 | 50-60 with some exceptions |
Noval (Miniature 9-pin) | B9A | American Small Button, Button 9-pin | 9 | 11.89mm (15/32") circle, 8x36° then 72° spacing between pins 9 & 1 |
1.016mm | IEC 67-I-12a JEDEC E9-1 |
1948 - present (still very popular) | 12AX7/ECC83, 6BQ5/EL84 | 80-89, 180-189, 800-899 |
Magnoval | B9D | 9 | 17.45mm (11/16") circle, 8x36° then 72° spacing between pins 9 & 1 |
1.27mm | IEC 67-I-36a JEDEC E9-23 |
1960s-1970s died out when TVs went fully solid-state |
E55L, ED500, PL504 | 500-599 | |
Novar | B9E | 9-pin compactron | 9 | 17.45mm (11/16") circle, 9x36° then gap between pins 9 & 1 Note: Novar sockets can be damaged by inserting Magnoval tubes[37] |
1.02mm | JEDEC E9-65 JEDEC E9-89 |
1959 - limited use; mainly TV horiz. output, damper |
6JF6, 22JG6A, 7868 | - |
Decal | B10B[38] or B10C?[39] often incorrectly stated |
Dekal | 10 | 11.89mm (15/32") circle, 9x34° then 54° gap between pins 10 & 1 |
1.016mm | IEC 67-I-41a JEDEC E10-61 |
1960s - 1970s | PFL200, ECC2000, ECH200, PCF201 | 200-299 2000 |
Decar | B10G | Dekar | 10 | 11.89mm (15/32") circle as Noval, with additional center pin | 1.016mm | Sylvania JEDEC E10-73 |
Mid-Late 1960s | 6C9, 17C9 | |
Y10A | G10A (G8A tubes fit with pins 6 & 10 unused) | 10 | 28mm circle, 2 groups of 5 pins with two gaps | AZ11, EC156 | |||||
Sub-Magnal | B11A | Magnal, B11 | 11 | 17.45mm (11/16") circle as Octal | 1.27mm | RCA? | 1940s to present | ||
DuoDecal | B12A | Duodekal, B12 | 12 | 27mm (1.063") circle, 30° angles |
2.36mm | B12-43 | 1950s - 1970s | DG7-31, E1T, MW61-80 | - |
Duodecar | B12C | 12-Pin-Compactron, E12-70, E12-74 | 12 | 19.1mm (3/4") circle, 11x 27.7° then gap between pins 12 & 1 |
1.02mm | E12-70(T9) E12-74(T12)[40] |
1960s - 1970s | 1BY2, 6BD11, 12BT3 | - |
Nuvistor | E5-65 | 5 | only pins 2, 4, 8 10, 12 used from Twelvar | <1mm | E5-65 | 8393 | |||
Nuvistor | B12K | Twelvar E7-83, E12-64, E12-65 | 12 | 11.2mm circular envelope with mixed-spacing field of pins | <1mm | IEC 67-I-17a JEDEC E12-64(5/12) |
1959 - | 7586, 6DV4, 6DV8, 13CW4[41] | - |
See also関連項目
[編集]- Nuvistor
- Compactron
- Amphenol
- List of vacuum tubes
[[Category:真空管]] [[Category:未査読の翻訳があるページ]]
- ^ Qvigstad (2012年). “Sokkel oversikt radiorør” (ノルウェー語). Vacuum tube bases overview. Radio amateur LA9DL. 9 January 2013閲覧。
- ^ “Tube Bases”. Frank's Electron Tube Pages. 20 July 2013閲覧。
- ^ Stone. “Deforest Spherical Audion”. Stone Vintage Radio Museum. 20 July 2013閲覧。
- ^ Stone. “Cunningham Tubular Audio Tron”. Stone Vintage Radio Museum. 20 July 2013閲覧。
- ^ Stone. “Deforest Oscillion 250 W Transmitting Tube”. Stone Vintage Radio Museum. 20 July 2013閲覧。
- ^ “C6A”. Radiomuseum.org. 4 November 2019閲覧。
- ^ Schmid. “R-390A plug-in multi-section electrolytic capacitor kit”. Schmid-Mainz. 20 July 2013閲覧。
- ^ “Amperite | Time Delay Relays | Flashers | Controlling Devices | Relay Requirements”. www.amperite.com. 2016年1月22日閲覧。
- ^ Advantages of a Full Featured, Octal 700 Series Relay. Magnecraft
- ^ Amperite Relay Catalog. Amperite
- ^ Staff of 'Wireless World' (1958). “Explanation of Valve-Base Connections”. Radio Valve Data (Sixth ed.). London: Iliffe $ Sons Ltd. p. 87
- ^ “Sylvania Type 7A8”. 20 July 2013閲覧。
- ^ “DAC21”. 25 August 2012閲覧。
- ^ a b Schiffer, Michael Brian (1992). The Portable Radio in American Life. University of Arizona Press. pp. 123–125. ISBN 978-0816512843
- ^ “Miniature Radio Tubes”. Radio Age: 19. (April 1945) 20 July 2013閲覧。.
- ^ Sōgo Okamura, ed (1994). History of Electron Tubes. IOS Press. p. 27. ISBN 978-9051991451
- ^ “Pacific T.V. - Vacuum Tube Sockets”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ “Abbildungen - Figures”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ “Appendix - Figures”. KyteLabs. 7 January 2013閲覧。
- ^ “Pee Wee 3p”. Frank Philipse. 7 January 2013閲覧。
- ^ “Base B3G”. The National Valve Museum. 20 July 2013閲覧。
- ^ “EA50 Signal Diode”. 25 May 2014閲覧。
- ^ "Miniwatt" Technical Data (6th ed.). Australia: The "Miniwatt" Electronics Division of Philips Electrical Industries Pty. Limited. (1958). pp. 158
- ^ “A-P_Oscillator”. 7 January 2013閲覧。 “Saga of the Vacuumtube, Tyne page 176”
- ^ “Base B4”. 25 May 2014閲覧。
- ^ “Base B5”. 25 May 2014閲覧。
- ^ “Base UX6”. The National Valve Museum. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ “Base B7”. The national Valve Museum. 9 January 2013閲覧。
- ^ Philipse. “Frank's Electron tube Pages - Tube Bases”. 26 May 2014閲覧。
- ^ a b “Base Mazda Octal”. The National Valve Museum. 7 January 2013閲覧。
- ^ a b “ATP4 tube”. The AmateurTele.com. 10 February 2015閲覧。
- ^ “Appendix - Figures”. KyteLabs. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ “Base B8B”. The National Valve Museum. 8 January 2013閲覧。
- ^ “Base B9G”. 25 May 2014閲覧。
- ^ Dekker. “EF50 - The Development of the All-Glass Valve.”. 25 May 2014閲覧。
- ^ Prakke, F.; J.L.H. Jonker; M.J.O. Strutt (May 1939). “A New "All-Glass" Valve Construction”. The Wireless Engineer 26 May 2014閲覧。.
- ^ “Novar vs Magnoval Vacuum Tube Sockets”. Antique Radio Forums (2011年2月17日). Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ “Base B10B”. The National Valve Museum. 7 January 2013閲覧。
- ^ “PCF201”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ KyteLabs (2014年2月19日). “KyteLabs InfoBase - Electron Tubes & Valves Data” (de, en). 13 October 2014閲覧。
- ^ “Nuvistor 13CW4”. Tube Data. 20 July 2013閲覧。