コンテンツにスキップ

利用者:新世紀のウィキぺディア/sandbox

暗い灰色と赤の物体は地球を表し、その左にある黒くて丸い物体は太陽を表す。
画家による想像図。今から70億年後には、地球は黒焦げになり、赤色巨星となった太陽に飲み込まれると考えられている。

全ての未来についての予測は確実であることは有り得ず[1]、遠未来の出来事は簡略であることだけについて様々な予測が許される。それらは惑星恒星の外観、相互作用、死が推測される天体物理学、最も小さいスケールにおいて物体がどのような振る舞いをするかが推測される素粒子物理学、長期に渡って生物がどのように進化していくかどうかが推測される進化生物学、何ミレニアムにも渡って大陸がどのように動いていくかが推測されるプレートテクニクスなどである。 全ての地球の未来太陽系の未来そして宇宙の未来についての推定は熱力学第二法則に則って計算されなければならず、エントロピーの状態利用できるエネルギーのロスは必ず時間と共に増大していく[2]。恒星はやがては必ず水素を使い果たして燃え尽きてしまうし、恒星の重力を振り切ってそれらの惑星系から飛んできた惑星や銀河からのスター・システムと人類が遭遇する確率も低い[3]

やがては、物体は放射性崩壊を起こすし、最も安定した金属も壊れて亜原子粒子となる[4]。最新のデータは宇宙の形は平らであるか、それに非常に近く、宇宙は永遠にビッククランチを起こさないことを予想する[5]。そして、無限の未来では潜在的に大規模でありそうにない出来事の発生が許され、いくつもの出来事の構成はボルズマン・ブレインによって予測されたものである[6]。 この年表は11千年紀の始まり[注釈 1]から推測が及ぶ最も遠い未来までに予想される出来事を記述している。年表の中にはまだ解明されていない事柄がいくつも含まれている。人類が絶滅するかどうか、陽子崩壊が起こるかどうか、赤色巨星となった太陽に飲み込まれた地球が生き延びられるかどうかなどによって、未来は変わってくる。

どの学問によってその出来事が推測されるか[編集]

[[File:Five Pointed Star Solid.svg|16px|alt=天文学と天体物理学|天文学と天体物理学] 天文学天体物理学
地質学と惑星科学 地質学惑星科学
生物学 生物学
素粒子物理学 素粒子物理学
数学 数学
技術と文化 技術文化

Future of the Earth, the Solar System and the Universe[編集]

Years from now Event
Geology and planetary science 10,000 If a failure of the Wilkes Subglacial Basin "ice plug" in the next few centuries were to endanger the East Antarctic Ice Sheet, it will take up to this long to melt completely. Sea levels would rise 3 to 4 meters.[7] (One of the potential long-term effects of global warming, this is separate from the shorter term threat of the West Antarctic Ice Sheet).
Astronomy and astrophysics 10,000[注釈 2] The red supergiant star Antares will likely have exploded in a supernova. The explosion is expected to be easily visible in daylight.[8]
Geology and planetary science 25,000 The northern Martian polar ice cap could recede as Mars reaches a warming peak of the northern hemisphere during the ~50,000 year perihelion precession aspect of its Milankovitch cycle.[9][10]
Astronomy and astrophysics 36,000 The small red dwarf Ross 248 will pass within 3.024 light years of Earth, becoming the closest star to the Sun.[11] It will recede after about 8,000 years, making first Alpha Centauri again and then Gliese 445 the nearest stars[11] (see timeline).
Geology and planetary science 50,000 According to Berger and Loutre, the current interglacial period ends[12] sending the Earth back into a glacial period of the current ice age, regardless of the effects of anthropogenic global warming.

Niagara Falls will have eroded away the remaining 32 km to Lake Erie, and ceased to exist.[13]

The many glacial lakes of the Canadian Shield will have been erased by post-glacial rebound and erosion.[14]

Astronomy and astrophysics 50,000 The length of the day used for astronomical timekeeping reaches about 86,401 SI seconds, due to lunar tides decelerating the Earth's rotation. Under the present-day timekeeping system, a leap second will need to be added to the clock every day.[15]
Astronomy and astrophysics 100,000 The proper motion of stars across the celestial sphere, which is the result of their movement through the Milky Way, renders many of the constellations unrecognisable.[16]
Astronomy and astrophysics 100,000[注釈 2] The hypergiant star VY Canis Majoris will likely have exploded in a hypernova.[17]
Geology and planetary science 100,000[注釈 2] Earth will likely have undergone a supervolcanic eruption large enough to erupt 400 km3 of magma. For comparison, Lake Erie is 484 km3.[18]
Biology 100,000 Native North American earthworms, such as Megascolecidae, will have naturally spread north through the United States Upper Midwest to the Canada–US border, recovering from the Laurentide ice sheet glaciation (38°N to 49°N), assuming a migration rate of 10 m / year.[19] (However, non-native invasive earthworms of North America have already been introduced by humans on a much shorter timescale, causing a shock to the regional ecosystem).
Geology and planetary science 100,000+ As one of the long-term effects of global warming, 10% of anthropogenic carbon dioxide will still remain in a stabilized atmosphere.[20]
Geology and planetary science 250,000 Lōʻihi, the youngest volcano in the Hawaiian–Emperor seamount chain, will rise above the surface of the ocean and become a new volcanic island.[21]
Astronomy and astrophysics ~300,000[注釈 2] At some point in the next "several" hundred thousand years, the Wolf-Rayet star WR 104 is expected to explode in a supernova. It has been suggested that it may produce a gamma ray burst that could pose a threat to life on Earth should its poles be aligned 12° or lower towards Earth. The star's axis of rotation has yet to be determined with certainty.[22]
Astronomy and astrophysics 500,000[注釈 2] Earth will likely have been hit by an asteroid of roughly 1 km in diameter, assuming it cannot be averted.[23]
Geology and planetary science 500,000 The rugged terrain of Badlands National Park in South Dakota will have eroded away completely.[24]
Geology and planetary science 950,000 Meteor Crater, a large impact crater in Arizona considered the "freshest" of its kind, will have been eroded away.[25]
Geology and planetary science 1 million[注釈 2] Earth will likely have undergone a supervolcanic eruption large enough to erupt 3,200 km3 of magma, an event comparable to the Toba supereruption 75,000 years ago.[18]
Astronomy and astrophysics 1 million[注釈 2] Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.[26][27]
Astronomy and astrophysics 1.4 million The star Gliese 710 will pass as close as 13,365 AU (0.2 light years to the Sun) before moving away. This will gravitationally perturb members of the Oort cloud, a halo of icy bodies orbiting at the edge of the Solar System, thereafter increasing the likelihood of a cometary impact in the inner Solar System.[28]
Biology 2 million Estimated time required for coral reef ecosystems to physically rebuild and biologically recover from current human-caused ocean acidification.[29]
Geology and planetary science 2 million+ The Grand Canyon will erode further, deepening slightly, but principally widening into a broad valley surrounding the Colorado River.[30]
Astronomy and astrophysics 2.7 million Average orbital half-life of current centaurs, that are unstable because of gravitational interaction of the several outer planets.[31] See predictions for notable centaurs.
Geology and planetary science 10 million The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa[32] and the African Plate into the newly formed Nubian Plate and the Somali Plate.
Biology 10 million Estimated time for full recovery of biodiversity after a potential Holocene extinction, if it were on the scale of the five previous major extinction events.[33]

Even without a mass extinction, by this time most current species will have disappeared through the background extinction rate, with many clades gradually evolving into new forms.[34] (However, without a mass extinction, there will now be an ecological crisis requiring millions of years of recovery).

Astronomy and astrophysics 50 million Maximum estimated time before the moon Phobos collides with Mars.[35]
Geology and planetary science 50 million The Californian coast begins to be subducted into the Aleutian Trench due to its northward movement along the San Andreas Fault.[36]

Africa's collision with Eurasia closes the Mediterranean Basin and creates a mountain range similar to the Himalayas.[37]

The Appalachian Mountains peaks will largely erode away,[38] weathering at 5.7 Bubnoff units, although topography will actually increase as regional valleys deepen at twice this rate.[39]

Geology and planetary science 50–60 million The Canadian Rockies will erode away to a plain, assuming a rate of 60 Bubnoff units.[40] (The Southern Rockies in the United States are eroding at a somewhat slower rate.[41])
Geology and planetary science 50–400 million Estimated time for Earth to naturally replenish its fossil fuel reserves.[42]
Geology and planetary science 80 million The Big Island becomes the last of the current Hawaiian Islands to sink beneath the surface of the ocean.[43]
Astronomy and astrophysics 100 million[注釈 2] Earth will likely have been hit by an asteroid comparable in size to the one that triggered the K–Pg extinction 65 million years ago, assuming it cannot be averted.[44]
Geology and planetary science 100 million Upper estimate for lifespan of the rings of Saturn in their current state.[45]
Mathematics 230 million Prediction of the orbits of the planets is impossible over greater time spans than this, due to the limitations of Lyapunov time.[46]
Astronomy and astrophysics 240 million From its present position, the Solar System completes one full orbit of the Galactic center.[47]
Geology and planetary science 250 million All the continents on Earth may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, and Pangaea Ultima.[48][49]
Geology and planetary science 400–500 million The supercontinent (Pangaea Ultima, Novopangaea, or Amasia) will likely have rifted apart.[49]
Astronomy and astrophysics 500–600 million[注釈 2] Estimated time until a gamma ray burst, or massive, hyperenergetic supernova, occurs within 6,500 light-years of Earth; close enough for its rays to affect Earth's ozone layer and potentially trigger a mass extinction, assuming the hypothesis is correct that a previous such explosion triggered the Ordovician–Silurian extinction event. However, the supernova would have to be precisely oriented relative to Earth to have any negative effect.[50]
Astronomy and astrophysics 600 million Tidal acceleration moves the Moon far enough from Earth that total solar eclipses are no longer possible.[51]
Geology and planetary science 600 million The Sun's increasing luminosity begins to disrupt the carbonate–silicate cycle; higher luminosity increases weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. As water evaporates from the Earth's surface, rocks harden, causing plate tectonics to slow and eventually stop. Without volcanoes to recycle carbon into the Earth's atmosphere, carbon dioxide levels begin to fall.[52] By this time, carbon dioxide levels will fall to the point at which C3 photosynthesis is no longer possible. All plants that utilize C3 photosynthesis (~99 percent of present-day species) will die.[53]
Geology and planetary science 800 million Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible.[53] Free oxygen and ozone disappear from the atmosphere. Multicellular life dies out.[54]
Geology and planetary science 1 billion[注釈 3] The Sun's luminosity has increased by 10 percent, causing Earth's surface temperatures to reach an average of ~320 K (47 °C, 116 °F). The atmosphere will become a "moist greenhouse", resulting in a runaway evaporation of the oceans.[55] Pockets of water may still be present at the poles, allowing abodes for simple life.[56][57]
Geology and planetary science 1.3 billion Eukaryotic life dies out due to carbon dioxide starvation. Only prokaryotes remain.[54]
Astronomy and astrophysics 1.5–1.6 billion The Sun's increasing luminosity causes its circumstellar habitable zone to move outwards; as carbon dioxide increases in Mars's atmosphere, its surface temperature rises to levels akin to Earth during the ice age.[54][58]
Geology and planetary science 2.3 billion The Earth's outer core freezes, if the inner core continues to grow at its current rate of 1 mm per year.[59][60] Without its liquid outer core, the Earth's magnetic field shuts down,[61] and charged particles emanating from the Sun gradually deplete the atmosphere.[62]
Geology and planetary science 2.8 billion Earth's surface temperature, even at the poles, reaches an average of ~422 K (149 °C; 300 °F). At this point, life, now reduced to unicellular colonies in isolated, scattered microenvironments such as high-altitude lakes or subsurface caves, will completely die out.[52][63][注釈 4]
Astronomy and astrophysics 3 billion Median point at which the Moon's increasing distance from the Earth lessens its stabilising effect on the Earth's axial tilt. As a consequence, Earth's true polar wander becomes chaotic and extreme.[64]
Astronomy and astrophysics 3.3 billion One percent chance that Jupiter's gravity may make Mercury's orbit so eccentric as to collide with Venus, sending the inner Solar System into chaos and potentially leading to a planetary collision with Earth. Other possible scenarios include Mercury colliding with the Sun, being ejected from the Solar System, or colliding with Earth.[65]
Geology and planetary science 3.5–4.5 billion The amount of water vapour in the lower atmosphere increases to 40%. This, combined with the luminosity of the Sun reaching roughly 35–40% more than its present-day value, will result in Earth's atmosphere heating up and the surface temperature skyrocketing to roughly 1,600 K (1,330 °C; 2,420 °F), hot enough to melt surface rock.[66][67][68][69] This essentially will make the planet much like how Venus is today.[70]
Astronomy and astrophysics 3.6 billion Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a planetary ring system similar to Saturn's.[71]
Astronomy and astrophysics 4 billion Median point by which the Andromeda Galaxy will have collided with the Milky Way, which will thereafter merge to form a galaxy dubbed "Milkomeda".[72] The planets of the Solar System are expected to be relatively unaffected by this collision.[73][74][75]
Astronomy and astrophysics 5 billion With the hydrogen supply exhausted at its core, the Sun leaves the main sequence and begins to evolve into a red giant.[76]
Astronomy and astrophysics 7.5 billion Earth and Mars may become tidally locked with the expanding subgiant Sun.[58]
Astronomy and astrophysics 7.59 billion The Earth and Moon are very likely destroyed by falling into the Sun, just before the Sun reaches the tip of its red giant phase and its maximum radius of 256 times the present day value.[76][注釈 5] Before the final collision, the Moon possibly spirals below Earth's Roche limit, breaking into a ring of debris, most of which falls to the Earth's surface.[77]
Astronomy and astrophysics 7.9 billion The Sun reaches the tip of the red-giant branch of the Hertzsprung–Russell diagram, achieving its maximum radius of 256 times the present day value.[78] In the process, Mercury, Venus, very likely Earth, and possibly Mars are destroyed.[76]

During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[79]

Astronomy and astrophysics 8 billion The Sun becomes a carbon-oxygen white dwarf with about 54.05 percent its present mass.[76][80][81][注釈 6] At this point, if somehow the Earth survives, temperatures on the surface of the planet, as well as other remaining planets in the Solar System, will begin to start dropping rapidly, due to the white dwarf Sun emitting much less energy than it does today.
Astronomy and astrophysics 22 billion The end of the Universe in the Big Rip scenario, assuming a model of dark energy with w = −1.5.[82] Observations of galaxy cluster speeds by the Chandra X-ray Observatory suggest that the true value of w is ~-0.991, meaning the Big Rip will not occur.[83]
Astronomy and astrophysics 50 billion If the Earth and Moon are not engulfed by the Sun, by this time they will become tidelocked, with each showing only one face to the other.[84][85] Thereafter, the tidal action of the Sun will extract angular momentum from the system, causing the lunar orbit to decay and the Earth's spin to accelerate.[86]
Astronomy and astrophysics 100 billion The Universe's expansion causes all galaxies beyond the former Milky Way's Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe.[87]
Astronomy and astrophysics 150 billion The cosmic microwave background cools from its current temperature of ~2.7 K to 0.3 K, rendering it essentially undetectable with current technology.[88]
Astronomy and astrophysics 450 billion Median point by which the ~47 galaxies[89] of the Local Group will coalesce into a single large galaxy.[4]
Astronomy and astrophysics 800 billion Expected time when the net light emission from the combined "Milkomeda" galaxy begins to decline as the red dwarf stars pass through their blue dwarf stage of peak luminosity.[90]
Astronomy and astrophysics 1012 (1 trillion) Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[4]

The universe's expansion, assuming a constant dark energy density, multiplies the wavelength of the cosmic microwave background by 1029, exceeding the scale of the cosmic light horizon and rendering its evidence of the Big Bang undetectable. However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars.[87]

Astronomy and astrophysics 4x1012 (4 trillion) Estimated time until the red dwarf star Proxima Centauri, the closest star to the Sun at a distance of 4.25 light-years, leaves the main sequence and becomes a white dwarf.[91]
Astronomy and astrophysics 1.2x1013 (12 trillion) Estimated time until the red dwarf VB 10, as of 2016 the least massive main sequence star with an estimated mass of 0.075 M, runs out of hydrogen in its core and becomes a white dwarf.[92][93]
Astronomy and astrophysics 3×1013 (30 trillion) Estimated time for stars (including the Sun) to undergo a close encounter with another star in local stellar neighborhoods. Whenever two stars (or stellar remnants) pass close to each other, their planets' orbits can be disrupted, potentially ejecting them from the system entirely. On average, the closer a planet's orbit to its parent star the longer it takes to be ejected in this manner, because it is gravitationally more tightly bound to the star.[94]
Astronomy and astrophysics 1014 (100 trillion) High estimate for the time until normal star formation ends in galaxies.[4] This marks the transition from the Stelliferous Era to the Degenerate Era; with no free hydrogen to form new stars, all remaining stars slowly exhaust their fuel and die.[3]
Astronomy and astrophysics 1.1–1.2×1014 (110–120 trillion) Time by which all stars in the universe will have exhausted their fuel (the longest-lived stars, low-mass red dwarfs, have lifespans of roughly 10–20 trillion years).[4] After this point, the stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars, black holes) and brown dwarfs.

Collisions between brown dwarfs will create new red dwarfs on a marginal level: on average, about 100 stars will be shining in what was once the Milky Way. Collisions between stellar remnants will create occasional supernovae.[4]

Astronomy and astrophysics 1015 (1 quadrillion) Estimated time until stellar close encounters detach all planets in star systems (including the Solar System) from their orbits.[4]

By this point, the Sun will have cooled to five degrees above absolute zero.[95]

Astronomy and astrophysics 1019 to 1020 (10–100 quintillion) Estimated time until 90%–99% of brown dwarfs and stellar remnants (including the Sun) are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy, with lower-mass objects tending to gain energy. Through repeated encounters, the lower-mass objects can gain enough energy in this manner to be ejected from their galaxy. This process eventually causes the Milky Way to eject the majority of its brown dwarfs and stellar remnants.[4][96]
Astronomy and astrophysics 1020 (100 quintillion) Estimated time until the Earth collides with the black dwarf Sun due to the decay of its orbit via emission of gravitational radiation,[97] if the Earth is not ejected from its orbit by a stellar encounter or engulfed by the Sun during its red giant phase.[97]
Astronomy and astrophysics 1030 Estimated time until those stars not ejected from galaxies (1%–10%) fall into their galaxies' central supermassive black holes. By this point, with binary stars having fallen into each other, and planets into their stars, via emission of gravitational radiation, only solitary objects (stellar remnants, brown dwarfs, ejected planets, black holes) will remain in the universe.[4]
Particle physics 2×1036 The estimated time for all nucleons in the observable universe to decay, if the proton half-life takes its smallest possible value (8.2×1033 years).[98][99][注釈 7]
Particle physics 3×1043 Estimated time for all nucleons in the observable universe to decay, if the proton half-life takes the largest possible value, 1041 years,[4] assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[99][注釈 7] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[3][4]
Particle physics 1065 Assuming that protons do not decay, estimated time for rigid objects, from free-floating rocks in space to planets, to rearrange their atoms and molecules via quantum tunneling. On this timescale, any discrete body of matter "behaves like a liquid" and becomes a smooth sphere due to diffusion and gravity.[97]
Particle physics 5.8×1068 Estimated time until a stellar mass black hole with a mass of 3 solar masses decays into subatomic particles by the Hawking process.[100]
Particle physics 1.342×1099 Estimated time until the central black hole of S5 0014+81, as of 2015 the most massive known with the mass of 40 billion solar masses, dissipates by the emission of Hawking radiation,[100] assuming zero angular momentum (non-rotating black hole). However, the black hole is on the state of accretion, so the time it takes may be longer than stated on the left.
Particle physics 1.7×10106 Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[100] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state in the heat death of the universe.[3][4]
Particle physics 10200 Estimated high time for all nucleons in the observable universe to decay, if they don't via the above process, through any one of many different mechanisms allowed in modern particle physics (higher-order baryon non-conservation processes, virtual black holes, sphalerons, etc.) on time scales of 1046 to 10200 years.[3]
Particle physics 101500 Assuming protons do not decay, the estimated time until all baryonic matter has either fused together to form iron-56 or decayed from a higher mass element into iron-56.[97] (see iron star)
Particle physics [注釈 8][注釈 9] Low estimate for the time until all objects exceeding the Planck mass[出典無効] collapse via quantum tunnelling into black holes, assuming no proton decay or virtual black holes.[97] On this vast timescale, even ultra-stable iron stars are destroyed by quantum tunnelling events. First iron stars of sufficient mass will collapse via tunnelling into neutron stars. Subsequently, neutron stars and any remaining iron stars collapse via tunnelling into black holes. The subsequent evaporation of each resulting black hole into sub-atomic particles (a process lasting roughly 10100 years) is on these timescales instantaneous.
Particle physics [注釈 2] Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[6]
Particle physics High estimate for the time until all matter collapses into neutron stars or black holes, assuming no proton decay or virtual black holes,[97] which then (on these timescales) instantaneously evaporate into sub-atomic particles.
Particle physics High estimate for the time for the Universe to reach its final energy state, even in the presence of a false vacuum.[6][出典無効]
Particle physics [注釈 2] Around this vast timeframe, quantum tunnelling in any isolated patch of the vacuum could generate, via inflation, new Big Bangs giving birth to new universes.[101]

Because the total number of ways in which all the subatomic particles in the observable universe can be combined is ,[102][103] a number which, when multiplied by , disappears into the rounding error, this is also the time required for a quantum-tunnelled and quantum fluctuation-generated Big Bang to produce a new universe identical to our own, assuming that every new universe contained at least the same number of subatomic particles and obeyed laws of physics within the range predicted by string theory.[104]

人類の未来[編集]

現在からの年数 予想される出来事
技術と文化 10,000年後 フランク・ドレイク独自の公式であるドレイクの方程式によると、技術的な文明は恐らく、この頃に寿命を迎える[105]
生物学 10,000年後 もしグローバリゼーションの動向がパンミクシーに向かっていくのなら、人類の遺伝上の変異の地方化がこのころより後まで長引くことはない。有効個体数が実際の人口と等しくなることも無い[106]。(これは同種であり少数の体質が未だに保存されているであろう、例えば、金髪が見えなくなる遺伝子ではないが、むしろ平らかつ世界的に分配される。)
数学 10,000年後 人類の誕生から絶滅までに生まれる全人類のうち半数が既に誕生しているであろうと主張するブランドン・カーターの公式や世界の終末についての議論によると、人類は95%の確率でこの時までに絶滅している[107]
技術と文化 20,000年後 言語年代学を提唱したモリス・スワデシュの言語学モデルによると、この頃の未来の言語は彼らのスワデシュ・リストに載っている"中心語彙"の単語比較によると、彼らの現在の人祖の1%しか残っていない[108]
地質学と惑星科学 100,000年以上後 酸素濃度を呼吸可能に保つために、この頃になると火星のテラフォーミングが必須となる。惑星のみを使用し太陽の効率で、現在地球上にできている生物圏と比較できるくらいの規模の生物圏が発達する。[109]
技術と文化 100万年後 光速の10%の速度で宇宙船が航行すると仮定すると、最も早くてこの頃に、人類が銀河系を植民地化した上で、有用な銀河の全てのエネルギーを使用できるようになる[110]
Biology 200万年後 脊柱動物の種は、この頃に一般的な異所的種分化を経験する[111]。進化生物学者のジェームス・W・バレンタインは、もし人類が遺伝的に孤立したスペースコロニーとして、時間を超えて散乱したならば、銀河系は複数の人種の宿主となり、進化論的放射がもたらす形態の多様性と適応は私たちに衝撃を与えるだろうと予言した[112]。(これは進化が住民の孤立化という自然な道を辿った場合の話であり、可能性として有り得る、故意的な遺伝的強化法の技術が発達した場合は関係がなくなる。)
数学 780万年後 人類は現在はすでにその歴史の半分が過ぎていると主張するリチャード・ゴットが公式化した世界の終末についての論争によると、人類はこの時には95%の確率で絶滅している。ref>J. Richard Gott, III (1993). “Implications of the Copernican principle for our future prospects”. ネイチャー 363 (6427): 315–319. Bibcode1993Natur.363..315G. doi:10.1038/363315a0. </ref> 。
技術と文化 500万年から5000万年後 早くてこの頃には、現在の技術で到達できる範囲の銀河系全体に入植者が居住するようになる[113]
技術と文化 1億年後 according to フランク・ドレイクが独自に考案したドレイクの方程式によると、技術文明は遅くともこの頃に寿命を迎える。[114]
天文学と天体物理学 10億年後 アストロエンジニアリングを行えば、この頃に太陽光が強くなり、地球がハビダブル・ゾーンの外側に移動しても、小惑星のスイングバイを繰り返せば、地球の公転軌道を変えて地球をハビダブル・ゾーンの中に戻せると推測される[115][116]

宇宙機と宇宙開発[編集]

現在までに5機の宇宙機(ボイジャー1号ボイジャー2号パイオニア10号パイオニア11号ニュー・ホライズンズ)は、太陽系を脱出し、恒星間空間に飛び出す軌道に乗っている。それらは何らかの物体に衝突するという非常に確率が低いことが無い限り、永遠に飛行を続ける。[117]

現在からの年数 出来事
天文学と天体物理学 10,000年後 パイオニア10号がバーナード星から3.8光年以内の距離を通過する[118]
天文学と天体物理学 25,000年後 1974年11月16日に送信された無線の収集であるアシレボ・メッセージがその目的地である球状星団M13までの距離を航行する[119]。 これは恒星間空間に向けて送信された無線メッセージだけがこのような銀河系の遠い領域まで到達することを意味する。M13が、アシレボ・メッセージがM13に向かっている間に24光年動くこともありえるが、M13の直径が168光年であることから、アシレボ・メッセージはやはりM13に到達する[120]。応答が地球に返ってくるまでには最低でもさらに25,000年かかる。
天文学と天体物理学 32,000年後 パイオニア10号が、ロス248から3光年以内の場所を通過する[121][122]
天文学と天体物理学 40,000年後 ボイジャー1号が、きりん座にある恒星のグリーゼ445(AC+79 3888としても知られる)から1.6光年以内の距離の地点を通過する[123]
Astronomy and astrophysics 50,000年後 宇宙タイムカプセルのKEOが打ち上げられていたならば、KEOはこの頃に地球の大気圏に再突入する[124]
天文学と天体物理学 296,000年後 ボイジャー2号は、地球から見て太陽以外で最も明るく見える恒星であるシリウスから4.3光年以内の距離の地点を通過する[123]
天文学と天体物理学 800,000年後から800万年後 早く見積もってこの頃に、パイオニア10号の金属板が寿命を迎える(エッチングが不明点が多い恒星間空間での浸食によって破壊される)[125]
天文学と天体物理学 200万年後 パイオニア10号が、アルデバランの近くを通過する[126]
天文学と天体物理学 4 million パイオニア11号が、わし座のある恒星の近くを通過する[126]
天文学と天体物理学 800万年後 人工衛星のLAGEOSの軌道が減衰し、大気圏に再突入し、遠い未来の人類の子孫にメッセージを運ぶ。そして、そのとき予想される大陸の地図が現れる[127]
天文学と天体物理学 10億年後 この頃、二つのボイジャー・ゴールデン・レコードは寿命を迎える(記憶された情報が回復不可能に陥る)と推測されている[128]

Technological projects[編集]

Years from now Event
technology and culture 10,000 Planned lifespan of the Long Now Foundation's several ongoing projects, including a 10,000-year clock known as the Clock of the Long Now, the Rosetta Project, and the Long Bet Project.[129]

Estimated lifespan of the HD-Rosetta analog disc, an ion beam-etched writing medium on nickel plate, a technology developed at Los Alamos National Laboratory and later commercialized. (The Rosetta Project uses this technology, named after the Rosetta Stone).

technology and culture 100,000+ Estimated lifespan of Memory of Mankind (MOM) self storage-style repository in Hallstatt salt mine in Austria, which stores information on inscribed tablets of stoneware.[130]
technology and culture 1 million Planned lifespan of the Human Document Project being developed at the University of Twente in the Netherlands.[131]
technology and culture 1 billion Estimated lifespan of "Nanoshuttle memory device" using an iron nanoparticle moved as a molecular switch through a carbon nanotube, a technology developed at the University of California at Berkeley.[132]
technology and culture more than 13 billion Estimated lifespan of "Superman memory crystal" data storage using femtosecond laser-etched nanostructures in glass, a technology developed at the University of Southampton.[133][134]

Human constructs[編集]

Years from now Event
Geology and planetary science 50,000 Estimated atmospheric lifetime of tetrafluoromethane, the most durable greenhouse gas.[135]
Geology and planetary science 1 million Current glass objects in the environment will be decomposed.[136]

Various public monuments composed of hard granite will have eroded one meter, in a moderate climate, assuming a rate of 1 Bubnoff unit (1 mm / 1,000 years, or ~1 inch / 10,000 years).[137]

Without maintenance, the Great Pyramid of Giza will erode into unrecognizability.[138]

On the Moon, Neil Armstrong's "one small step" footprint at Tranquility Base will erode by this time, along with those left by all twelve Apollo moonwalkers, due to the accumulated effects of space weathering.[139][140] (Normal erosion processes active on Earth are not present due to the Moon's almost complete lack of atmosphere).

Geology and planetary science 7.2 million Without maintenance, Mount Rushmore will erode into unrecognizability.[141]
Geology and planetary science 100 million Future archaeologists should be able to identify an "Urban Stratum" of fossilized great coastal cities, mostly through the remains of underground infrastructure such as building foundations and utility tunnels.[142]

Astronomical events[編集]

Extremely rare astronomical events beginning in the 11th millennium AD (year 10,001) will be:

Date / Years from now Event
Astronomy and astrophysics 20 August, AD 10,663 A simultaneous total solar eclipse and transit of Mercury.[143]
Astronomy and astrophysics 25 August, AD 11,268 A simultaneous total solar eclipse and transit of Mercury.[143]
Astronomy and astrophysics 28 February, AD 11,575 A simultaneous annular solar eclipse and transit of Mercury.[143]
Astronomy and astrophysics 17 September, AD 13,425 A near-simultaneous transit of Venus and Mercury.[143]
Astronomy and astrophysics AD 13,727 The Earth's axial precession will have made Vega the northern pole star.[144][145][146][147]
Astronomy and astrophysics 13,000 years By this point, halfway through the precessional cycle, Earth's axial tilt will be reversed, causing summer and winter to occur on opposite sides of Earth's orbit. This means that the seasons in the northern hemisphere, which experiences more pronounced seasonal variation due to a higher percentage of land, will be even more extreme, as it will be facing towards the Sun at Earth's perihelion and away from the Sun at aphelion.[145]
Astronomy and astrophysics 5 April, AD 15,232 A simultaneous total solar eclipse and transit of Venus.[143]
Astronomy and astrophysics 20 April, AD 15,790 A simultaneous annular solar eclipse and transit of Mercury.[143]
Astronomy and astrophysics 14,000-17,000 years The Earth's axial precession will make Canopus the South Star, but it will only be within 10° of the south celestial pole.[148]
Astronomy and astrophysics AD 20,346 Thuban will be the northern pole star.[149]
Astronomy and astrophysics AD 27,800 Polaris will again be the northern pole star.[150]
Astronomy and astrophysics 27,000 years The eccentricity of Earth's orbit will reach a minimum, 0.00236 (it is now 0.01671).[151][152]
Astronomy and astrophysics October, AD 38,172 A transit of Uranus from Neptune, the rarest of all planetary transits.[153]
Astronomy and astrophysics 26 July, AD 69,163 A simultaneous transit of Venus and Mercury.[143]
Astronomy and astrophysics AD 70,000 Comet Hyakutake returns to the inner solar system, after traveling in its orbit out to its aphelion 3,410 A.U. from the Sun and back.[154]
Astronomy and astrophysics 27 and 28 March, AD 224,508 Respectively, Venus and then Mercury will transit the Sun.[143]
Astronomy and astrophysics AD 571,741 A simultaneous transit of Venus and the Earth as seen from Mars[143]
Astronomy and astrophysics 6 million Comet C/1999 F1 (Catalina), one of the longest period comets known, returns to the inner solar system, after traveling in its orbit out to its aphelion 66,600 A.U. (1.05 light years) from the Sun and back.[155]

Calendric predictions[編集]

Years from now Event
Astronomy and astrophysics 10,000
The Gregorian calendar will be roughly 10 days out of sync with the seasons.[156]
Astronomy and astrophysics 10,868年 + 4日 10 June, AD 12,892 In the Hebrew calendar, due to a gradual drift with regard to the solar year, Passover will fall on the northern summer solstice (it is meant to fall around the spring equinox).[157]
Astronomy and astrophysics 18,849年 + 209日 AD 20,874 The lunar Islamic calendar and the solar Gregorian calendar will share the same year number. After this, the shorter Islamic calendar will slowly overtake the Gregorian.[158]
Astronomy and astrophysics 25,000
The Tabular Islamic calendar will be roughly 10 days out of sync with the Moon's phase.[159]
Astronomy and astrophysics 46,876年 + 268日 1 March, AD 48,901[注釈 10] The Julian calendar (365.25 days) and Gregorian calendar (365.2425 days) will be one year apart.[160]

Nuclear power[編集]

Years from now Event
Particle physics 10,000 The Waste Isolation Pilot Plant, for nuclear weapons waste, is planned to be protected until this time, with a "Permanent Marker" system designed to warn off visitors through both multiple languages (the six UN languages and Navajo) and through pictograms.[161] (The Human Interference Task Force has provided the theoretical basis for United States plans for future nuclear semiotics.)
Particle physics 20,000 The Chernobyl Exclusion Zone, the 2,600 km2 (1,000 sq mi) area of Ukraine and Belarus left deserted by the 1986 Chernobyl disaster, becomes safe for human life.[162]
Geology and planetary science 30,000 Estimated supply lifespan of fission-based breeder reactor reserves, using known sources, assuming 2009 world energy consumption.[163]
Geology and planetary science 60,000 Estimated supply lifespan of fission-based light water reactor reserves if it is possible to extract all the uranium from seawater, assuming 2009 world energy consumption.[163]
Particle physics 211,000 Half-life of technetium-99, the most important long-lived fission product in uranium-derived nuclear waste.
Particle physics 15.7 million Half-life of iodine-129, the most durable long-lived fission product in uranium-derived nuclear waste.
Geology and planetary science 60 million Estimated supply lifespan of fusion power reserves if it is possible to extract all the lithium from seawater, assuming 1995 world energy consumption.[164]
Geology and planetary science 5 billion Estimated supply lifespan of fission-based breeder reactor reserves if it is possible to extract all the uranium from seawater, assuming 1983 world energy consumption.[165]
Geology and planetary science 150 billion Estimated supply lifespan of fusion power reserves if it is possible to extract all the deuterium from seawater, assuming 1995 world energy consumption.[164]

Graphical timelines[編集]

For graphical, logarithmic timelines of these events see:

See also[編集]

Notes[編集]

  1. ^ The precise cutoff point is 0:00 on 1 January AD 10,001
  2. ^ a b c d e f g h i j k This represents the time by which the event will most probably have happened. It may occur randomly at any time from the present.
  3. ^ Units are short scale
  4. ^ There is a roughly 1 in 100,000 chance that the Earth might be ejected into interstellar space by a stellar encounter before this point, and a 1 in 3 million chance that it will then be captured by another star. Were this to happen, life, assuming it survived the interstellar journey, could potentially continue for far longer.
  5. ^ This has been a tricky question for quite a while; see the 2001 paper by Rybicki, K. R. and Denis, C. However, according to the latest calculations, this happens with a very high degree of certainty.
  6. ^ Based upon the weighted least-squares best fit on p. 16 of Kalirai et al. with the initial mass equal to a solar mass.
  7. ^ a b Around 264 half-lives. Tyson et al. employ the computation with a different value for half-life.
  8. ^ is 1 followed by 1026 (100 septillion) zeroes.
  9. ^ Although listed in years for convenience, the numbers beyond this point are so vast that their digits would remain unchanged regardless of which conventional units they were listed in, be they nanoseconds or star lifespans.
  10. ^ Manually calculated from the fact that the calendars were 10 days apart in 1582 and grew further apart by 3 days every 400 years. 1 March AD 48900 (Julian) and 1 March AD 48901 (Gregorian) are both Tuesday. The Julian day number (a measure used by astronomers) at Greenwich mean midnight (start of day) is 19 581 842.5 for both dates.

References[編集]

  1. ^ Rescher, Nicholas (1998). Predicting the future: An introduction to the theory of forecasting. State University of New York Press. ISBN 0-7914-3553-9 
  2. ^ Nave, C.R.. “Second Law of Thermodynamics”. Georgia State University. 2011年12月3日閲覧。
  3. ^ a b c d e Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. ISBN 978-0-684-85422-9 
  4. ^ a b c d e f g h i j k l Adams, Fred C.; Laughlin, Gregory (April 1997). “A dying universe: the long-term fate and evolution of astrophysical objects”. Reviews of Modern Physics 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337. 
  5. ^ Komatsu, E.; Smith, K. M.; Dunkley, J. et al. (2011). “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”. The Astrophysical Journal Supplement Series 192 (2): 18. arXiv:1001.4731. Bibcode2011ApJS..192...19W. doi:10.1088/0067-0049/192/2/18. 
  6. ^ a b c Linde, Andrei. (2007). “Sinks in the Landscape, Boltzmann Brains and the Cosmological Constant Problem”. Journal of Cosmology and Astroparticle Physics 2007 (1): 022. arXiv:hep-th/0611043. Bibcode2007JCAP...01..022L. doi:10.1088/1475-7516/2007/01/022. 
  7. ^ Mengel, M.; A. Levermann (4 May 2014). “Ice plug prevents irreversible discharge from East Antarctica”. Nature Climate Change 4 (6): 451–455. Bibcode2014NatCC...4..451M. doi:10.1038/nclimate2226. http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2226.html. 
  8. ^ Hockey, T.; Trimble, V. (2010). “Public reaction to a V = -12.5 supernova”. The Observatory 130: 167. Bibcode2010Obs...130..167H. 
  9. ^ Schorghofer, Norbert (23 September 2008). “Temperature response of Mars to Milankovitch cycles”. Geophysical Research Letters 35 (18): L18201. Bibcode2008GeoRL..3518201S. doi:10.1029/2008GL034954. http://www.ifa.hawaii.edu/~norb1/Papers/2008-milank.pdf. 
  10. ^ Beech, Martin (2009). Terraforming: The Creating of Habitable Worlds. Springer. pp. 138–142 
  11. ^ a b Matthews, R. A. J. (Spring 1994). “The Close Approach of Stars in the Solar Neighborhood”. Quarterly Journal of the Royal Astronomical Society 35 (1): 1. Bibcode1994QJRAS..35....1M. 
  12. ^ Berger, A; Loutre, MF (2002). “Climate: an exceptionally long interglacial ahead?”. Science 297 (5585): 1287–8. doi:10.1126/science.1076120. PMID 12193773. 
  13. ^ Niagara Falls Geology Facts & Figures”. Niagara Parks. 2011年4月29日閲覧。
  14. ^ Bastedo, Jamie (1994). Shield Country: The Life and Times of the Oldest Piece of the Planet. Arctic Institute of North America of the University of Calgary. p. 202 
  15. ^ Finkleman, David; Allen, Steve; Seago, John; Seaman, Rob; Seidelmann, P. Kenneth (June 2011). "The Future of Time: UTC and the Leap Second". arXiv:1106.3141
  16. ^ Tapping, Ken (2005年). “The Unfixed Stars”. National Research Council Canada. 2010年12月29日閲覧。
  17. ^ Monnier, J. D.; Tuthill, P.; Lopez, GB et al. (1999). “The Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery”. The Astrophysical Journal 512 (1): 351–361. arXiv:astro-ph/9810024. Bibcode1999ApJ...512..351M. doi:10.1086/306761. 
  18. ^ a b Super-eruptions: Global effects and future threats”. The Geological Society. 2012年5月25日閲覧。
  19. ^ Schaetzl, Randall J.; Anderson, Sharon (2005). Soils: Genesis and Geomorphology. Cambridge University Press. p. 105 
  20. ^ David Archer (2009). The Long Thaw: How Humans Are Changing the Next 100,000 Years of Earth's Climate. Princeton University Press. p. 123. ISBN 978-0-691-13654-7 
  21. ^ Frequently Asked Questions”. Hawai'i Volcanoes National Park (2011年). 2011年10月22日閲覧。
  22. ^ Tuthill, Peter; Monnier, John; Lawrance, Nicholas; Danchi, William; Owocki, Stan; Gayley, Kenneth (2008). “The Prototype Colliding-Wind Pinwheel WR 104”. The Astrophysical Journal 675 (1). arXiv:0712.2111. doi:10.1086/527286. 
  23. ^ Bostrom, Nick (March 2002). “Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards”. Journal of Evolution and Technology 9 (1). http://www.nickbostrom.com/existential/risks.html 2012年9月10日閲覧。. 
  24. ^ Badlands National Park - Nature & Science - Geologic Formations”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  25. ^ Landstreet, John D. (2003). Physical Processes in the Solar System: An introduction to the physics of asteroids, comets, moons and planets. Keenan & Darlington. pp. 121 
  26. ^ Sharpest Views of Betelgeuse Reveal How Supergiant Stars Lose Mass”. Press Releases. European Southern Observatory (2009年7月29日). 2010年9月6日閲覧。
  27. ^ Sessions, Larry (2009年7月29日). “Betelgeuse will explode someday”. EarthSky Communications, Inc. 2010年11月16日閲覧。
  28. ^ Filip Berski and Piotr A. Dybczyński (25 October 2016). “Gliese 710 will pass the Sun even closer”. Astronomy and Astrophysics 595 (L10). doi:10.1051/0004-6361/201629835.  }}
  29. ^ Goldstein, Natalie (2009). Global Warming. Infobase Publishing. p. 53 
  30. ^ Grand Canyon - Geology - A dynamic place”. Views of the National Parks. National Park Service. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  31. ^ Horner, J.; Evans, N.W.; Bailey, M. E. (2004). “Simulations of the Population of Centaurs I: The Bulk Statistics”. Monthly Notices of the Royal Astronomical Society 354 (3): 798–810. arXiv:astro-ph/0407400. Bibcode2004MNRAS.354..798H. doi:10.1111/j.1365-2966.2004.08240.x. 
  32. ^ Haddok, Eitan (2008年9月29日). “Birth of an Ocean: The Evolution of Ethiopia's Afar Depression”. Scientific American. 2010年12月27日閲覧。
  33. ^ Kirchner, James W.; Weil, Anne (9 March 2000). “Delayed biological recovery from extinctions throughout the fossil record”. Nature 404 (6774): 177–180. Bibcode2000Natur.404..177K. doi:10.1038/35004564. PMID 10724168. http://www.nature.com/nature/journal/v404/n6774/abs/404177a0.html. 
  34. ^ Wilson, Edward O. (1999). The Diversity of Life. W. W. Norton & Company. p. 216 
  35. ^ Bills, Bruce G.; Gregory A. Neumann; David E. Smith; Maria T. Zuber (2005). “Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos”. Journal of Geophysical Research 110 (E07004). Bibcode2005JGRE..110.7004B. doi:10.1029/2004je002376. http://www-geodyn.mit.edu/bills_phobos05.pdf. 
  36. ^ Garrison, Tom (2009). Essentials of Oceanography (5 ed.). Brooks/Cole. p. 62 
  37. ^ Continents in Collision: Pangea Ultima”. NASA (2000年). 2010年12月29日閲覧。
  38. ^ "Geology". Encyclopedia of Appalachia. University of Tennessee Press. 2011.
  39. ^ Hancock, Gregory; Kirwan, Matthew (January 2007). “Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians”. Geology 35 (1): 89. Bibcode2007Geo....35...89H. doi:10.1130/g23147a.1. http://pages.geo.wvu.edu/~kite/HancockKirwan2007SummitErosion.pdf. 
  40. ^ Yorath, C. J. (1995). Of rocks, mountains and Jasper: a visitor's guide to the geology of Jasper National Park. Dundurn Press. p. 30 
  41. ^ Dethier, David P.; Ouimet, W.; Bierman, P. R.; Rood, D. H. et al. (2014). “Basins and bedrock: Spatial variation in 10Be erosion rates and increasing relief in the southern Rocky Mountains, USA”. Geology 42 (2): 167–170. Bibcode2014Geo....42..167D. doi:10.1130/G34922.1. http://noblegas.berkeley.edu/~balcs/pubs/Dethier_2014_Geology.pdf. 
  42. ^ Patzek, Tad W. (2008). “Can the Earth Deliver the Biomass-for-Fuel we Demand?”. In Pimentel, David. Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer 
  43. ^ Perlman, David (2006年10月14日). “Kiss that Hawaiian timeshare goodbye / Islands will sink in 80 million years”. San Francisco Chronicle. http://www.sfgate.com/news/article/Kiss-that-Hawaiian-timeshare-goodbye-Islands-2468202.php 
  44. ^ Nelson, Stephen A.. “Meteorites, Impacts, and Mass Extinction”. Tulane University. 2011年1月13日閲覧。
  45. ^ Lang, Kenneth R. (2003). The Cambridge Guide to the Solar System. Cambridge University Press. pp. 328–329 
  46. ^ Hayes, Wayne B. (2007). “Is the Outer Solar System Chaotic?”. Nature Physics 3 (10): 689–691. arXiv:astro-ph/0702179. Bibcode2007NatPh...3..689H. doi:10.1038/nphys728. 
  47. ^ Leong, Stacy (2002年). “Period of the Sun's Orbit Around the Galaxy (Cosmic Year)”. The Physics Factbook. 2007年4月2日閲覧。
  48. ^ Scotese, Christopher R.. “Pangea Ultima will form 250 million years in the Future”. Paleomap Project. 2006年3月13日閲覧。
  49. ^ a b Williams, Caroline; Nield, Ted (2007年10月20日). “Pangaea, the comeback”. New Scientist. http://www.science.org.au/nova/newscientist/104ns_011.htm 2014年1月2日閲覧。 
  50. ^ Minard, Anne (2009年). “Gamma-Ray Burst Caused Mass Extinction?”. National Geographic News. 2012年8月27日閲覧。
  51. ^ Questions Frequently Asked by the Public About Eclipses”. NASA. 2010年3月7日閲覧。
  52. ^ a b O'Malley-James, Jack T.; Greaves, Jane S.; Raven, John A.; Cockell, Charles S. (2012). “Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes”. International Journal of Astrobiology 12 (2): 99–112. arXiv:1210.5721. Bibcode2013IJAsB..12...99O. doi:10.1017/S147355041200047X. 
  53. ^ a b Heath, Martin J.; Doyle, Laurance R. (2009). "Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions". arXiv:0912.2482
  54. ^ a b c Franck, S.; Bounama, C.; Von Bloh, W. (November 2005). “Causes and timing of future biosphere extinction”. Biogeosciences Discussions 2 (6): 1665–1679. Bibcode2005BGD.....2.1665F. doi:10.5194/bgd-2-1665-2005. http://biogeosciences-discuss.net/2/1665/2005/bgd-2-1665-2005.pdf 2011年10月19日閲覧。. 
  55. ^ Schröder, K.-P.; Connon Smith, Robert (1 May 2008). “Distant future of the Sun and Earth revisited”. Monthly Notices of the Royal Astronomical Society 386 (1): 155–163. arXiv:0801.4031. Bibcode2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. 
  56. ^ Brownlee, Donald E. (2010). “Planetary habitability on astronomical time scales”. In Schrijver, Carolus J.; Siscoe, George L.. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press. ISBN 978-0-521-11294-9. https://books.google.com/books?id=M8NwTYEl0ngC&pg=PA79 
  57. ^ Li King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Luk L. (2009). “Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere”. Proceedings of the National Academy of Sciences of the United States of America 106 (24): 9576–9. Bibcode2009PNAS..106.9576L. doi:10.1073/pnas.0809436106. PMC 2701016. PMID 19487662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701016/. 
  58. ^ a b Kargel, Jeffrey Stuart (2004). Mars: A Warmer, Wetter Planet. Springer. p. 509. ISBN 978-1-85233-568-7. https://books.google.com/?id=0QY0U6qJKFUC&pg=PA509&lpg=PA509&dq=mars+future+%22billion+years%22+sun 2007年10月29日閲覧。 
  59. ^ Waszek, Lauren; Irving, Jessica; Deuss, Arwen (20 February 2011). “Reconciling the Hemispherical Structure of Earth's Inner Core With its Super-Rotation”. Nature Geoscience 4 (4): 264–267. Bibcode2011NatGe...4..264W. doi:10.1038/ngeo1083. 
  60. ^ McDonough, W. F. (2004). “Compositional Model for the Earth's Core”. Treatise on Geochemistry 2: 547–568. Bibcode2003TrGeo...2..547M. doi:10.1016/B0-08-043751-6/02015-6. ISBN 978-0-08-043751-4. 
  61. ^ Luhmann, J. G.; Johnson, R. E.; Zhang, M. H. G. (1992). “Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions”. Geophysical Research Letters 19 (21): 2151–2154. Bibcode1992GeoRL..19.2151L. doi:10.1029/92GL02485. 
  62. ^ Quirin Shlermeler (3 March 2005). “Solar wind hammers the ozone layer”. News@nature. doi:10.1038/news050228-12. 
  63. ^ Adams, Fred C. (2008). “Long-term astrophysicial processes”. In Bostrom, Nick; Cirkovic, Milan M.. Global Catastrophic Risks. Oxford University Press. pp. 33–47 
  64. ^ Neron de Surgey, O.; Laskar, J. (1996). “On the Long Term Evolution of the Spin of the Earth”. Astronomy and Astrophysics 318: 975. Bibcode1997A&A...318..975N. 
  65. ^ “Study: Earth May Collide With Another Planet”. Fox News. (2009年6月11日). http://www.foxnews.com/story/0,2933,525706,00.html 2011年9月8日閲覧。 
  66. ^ Guinan, E. F.; Ribas, I. (2002), “Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth's Atmosphere and Climate”, in Montesinos, Benjamin; Gimenez, Alvaro; Guinan, Edward F., ASP Conference Proceedings, The Evolving Sun and its Influence on Planetary Environments, Astronomical Society of the Pacific, pp. 85–106, Bibcode2002ASPC..269...85G 
  67. ^ Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L. (June 16, 2009), “Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere”, Proceedings of the National Academy of Sciences of the United States of America 106 (24): 9576–9579, Bibcode2009PNAS..106.9576L, doi:10.1073/pnas.0809436106, PMC 2701016, PMID 19487662, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2701016 
  68. ^ Brownlee 2010, p. 95.
  69. ^ Kasting, J. F. (June 1988), “Runaway and moist greenhouse atmospheres and the evolution of earth and Venus”, Icarus 74 (3): 472–494, Bibcode1988Icar...74..472K, doi:10.1016/0019-1035(88)90116-9, PMID 11538226 
  70. ^ Hecht, Jeff (1994年4月2日). “Science: Fiery Future for Planet Earth”. New Scientist (1919): p. 14. http://www.newscientist.com/article/mg14219191.900-science-fiery-future-for-planet-earth-.html 2007年10月29日閲覧。 
  71. ^ Chyba, C. F.; Jankowski, D. G.; Nicholson, P. D. (1989). “Tidal Evolution in the Neptune-Triton System”. Astronomy and Astrophysics 219: 23. Bibcode1989A&A...219L..23C. 
  72. ^ Cox, J. T.; Loeb, Abraham (2007). “The Collision Between The Milky Way And Andromeda”. Monthly Notices of the Royal Astronomical Society 386 (1): 461–474. arXiv:0705.1170. Bibcode2008MNRAS.tmp..333C. doi:10.1111/j.1365-2966.2008.13048.x. 
  73. ^ NASA (2012年5月31日). “NASA's Hubble Shows Milky Way is Destined for Head-On Collision”. NASA. 2012年10月13日閲覧。
  74. ^ Dowd, Maureen (2012年5月29日). “Andromeda Is Coming!”. New York Times. https://www.nytimes.com/2012/05/30/opinion/dowd-andromeda-is-coming.html 2014年1月9日閲覧. "[NASA's David Morrison] explained that the Andromeda-Milky Way collision would just be two great big fuzzy balls of stars and mostly empty space passing through each other harmlessly over the course of millions of years." 
  75. ^ Braine, J.; Lisenfeld, U.; Duc, P. A. et al. (2004). “Colliding molecular clouds in head-on galaxy collisions”. Astronomy and Astrophysics 418 (2): 419–428. arXiv:astro-ph/0402148. Bibcode2004A&A...418..419B. doi:10.1051/0004-6361:20035732. http://www.aanda.org/index.php?option=article&access=doi&doi=10.1051/0004-6361:20035732 2008年4月2日閲覧。. 
  76. ^ a b c d Schroder, K. P.; Connon Smith, Robert (2008). “Distant Future of the Sun and Earth Revisited”. Monthly Notices of the Royal Astronomical Society 386 (1): 155–163. arXiv:0801.4031. Bibcode2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. 
  77. ^ Powell, David (January 22, 2007), “Earth's Moon Destined to Disintegrate”, Space.com (Tech Media Network), http://www.space.com/scienceastronomy/070122_temporary_moon.html 2010年6月1日閲覧。. 
  78. ^ Rybicki, K. R.; Denis, C. (2001). “On the Final Destiny of the Earth and the Solar System”. Icarus 151 (1): 130–137. Bibcode2001Icar..151..130R. doi:10.1006/icar.2001.6591. 
  79. ^ Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). “Titan under a red giant sun: A new kind of "habitable" moon” (PDF). Geophysical Research Letters 24 (22): 2905–8. Bibcode1997GeoRL..24.2905L. doi:10.1029/97GL52843. PMID 11542268. http://www.lpl.arizona.edu/~rlorenz/redgiant.pdf 2008年3月21日閲覧。. 
  80. ^ Balick, Bruce. “Planetary Nebulae and the Future of the Solar System”. University of Washington. 2006年6月23日閲覧。
  81. ^ Kalirai, Jasonjot S. et al. (March 2008). “The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End”. The Astrophysical Journal 676 (1): 594–609. arXiv:0706.3894. Bibcode2008ApJ...676..594K. doi:10.1086/527028. 
  82. ^ Universe May End in a Big Rip”. CERN Courier (2003年5月1日). 2011年7月22日閲覧。
  83. ^ Vikhlinin, A.; Kravtsov, A.V.; Burenin, R.A. et al. (2009). “Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints”. The Astrophysical Journal (Astrophysical Journal) 692 (2): 1060–1074. arXiv:0812.2720. Bibcode2009ApJ...692.1060V. doi:10.1088/0004-637X/692/2/1060. 
  84. ^ Murray, C.D.; Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press. p. 184. ISBN 978-0-521-57295-8. https://books.google.com/books?id=aU6vcy5L8GAC&pg=PA184#v=onepage&q&f=false 
  85. ^ Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 978-0-921820-71-0 
  86. ^ Canup, Robin M.; Righter, Kevin (2000). Origin of the Earth and Moon. The University of Arizona space science series. 30. University of Arizona Press. pp. 176–177. ISBN 978-0-8165-2073-2. https://books.google.com/books?id=8i44zjcKm4EC&pg=PA176 
  87. ^ a b Loeb, Abraham (2011). “Cosmology with Hypervelocity Stars”. Harvard University 2011: 023. arXiv:1102.0007. Bibcode2011JCAP...04..023L. doi:10.1088/1475-7516/2011/04/023. 
  88. ^ Chown, Marcus (1996). Afterglow of Creation. University Science Books. p. 210 
  89. ^ The Local Group of Galaxies”. University of Arizona. Students for the Exploration and Development of Space. 2009年10月2日閲覧。
  90. ^ Adams, F. C.; Graves, G. J. M.; Laughlin, G. (December 2004). García-Segura, G.; Tenorio-Tagle, G.; Franco, J. et al.. eds. “Gravitational Collapse: From Massive Stars to Planets. / First Astrophysics meeting of the Observatorio Astronomico Nacional. / A meeting to celebrate Peter Bodenheimer for his outstanding contributions to Astrophysics: Red Dwarfs and the End of the Main Sequence”. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) 22: 46–49. Bibcode2004RMxAC..22...46A.  See Fig. 3.
  91. ^ Fred C. Adams; Gregory Laughlin; Genevieve J. M. Graves (2004). “RED Dwarfs and the End of The Main Sequence”. RevMexAA (Serie de Conferencias) 22: 46–49. http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf. 
  92. ^ “Why the Smallest Stars Stay Small”. Sky & Telescope (22). (November 1997). 
  93. ^ Adams, F. C.; P. Bodenheimer; G. Laughlin (2005). “M dwarfs: planet formation and long term evolution”. Astronomische Nachrichten 326 (10): 913–919. Bibcode2005AN....326..913A. doi:10.1002/asna.200510440. 
  94. ^ Tayler, Roger John (1993). Galaxies, Structure and Evolution (2 ed.). Cambridge University Press. p. 92. ISBN 978-0-521-36710-3 
  95. ^ Barrow, John D.; Tipler, Frank J. (19 May 1988). The Anthropic Cosmological Principle. foreword by John A. Wheeler. Oxford: Oxford University Press. ISBN 978-0-19-282147-8. LC 87-28148. https://books.google.com/books?id=uSykSbXklWEC&printsec=frontcover 2009年12月31日閲覧。 
  96. ^ Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. pp. 85–87. ISBN 978-0-684-85422-9 
  97. ^ a b c d e f Dyson, Freeman J. (1979). “Time Without End: Physics and Biology in an Open Universe”. Reviews of Modern Physics 51 (3): 447–460. Bibcode1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447. http://www.aleph.se/Trans/Global/Omega/dyson.txt 2008年7月5日閲覧。. 
  98. ^ Nishino; Super-K Collaboration et al. (2009). “Search for Proton Decay via {{粒子の記号/記号}} でのエラー: 粒子 Proton+ は未登録。{{粒子の記号/記号}} でのエラー: 粒子 Positron は未登録。{{粒子の記号/記号}} でのエラー: 粒子 pion0 は未登録。 and {{粒子の記号/記号}} でのエラー: 粒子 Proton+ は未登録。{{粒子の記号/記号}} でのエラー: 粒子 Muon+ は未登録。{{粒子の記号/記号}} でのエラー: 粒子 pion0 は未登録。 in a Large Water Cherenkov Detector”. Physical Review Letters 102 (14): 141801. Bibcode2009PhRvL.102n1801N. doi:10.1103/PhysRevLett.102.141801. PMID 19392425. 
  99. ^ a b Tyson, Neil de Grasse; Tsun-Chu Liu, Charles; Irion, Robert (2000). One Universe: At Home in the Cosmos. Joseph Henry Press. ISBN 978-0-309-06488-0. http://www.nap.edu/jhp/oneuniverse/frontiers_solution_17.html 
  100. ^ a b c Page, Don N. (1976). “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole”. Physical Review D 13 (2): 198–206. Bibcode1976PhRvD..13..198P. doi:10.1103/PhysRevD.13.198.  See in particular equation (27).
  101. ^ Carroll, Sean M.; Chen, Jennifer (27 October 2004). "Spontaneous Inflation and the Origin of the Arrow of Time". arXiv:hep-th/0410270
  102. ^ Tegmark, M (May 2003). “Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations”. Sci Am. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329. 
  103. ^ Max Tegmark (2003). “Parallel Universes”. In "Science and Ultimate Reality: from Quantum to Cosmos", honoring John Wheeler's 90th birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper eds. (Cambridge University Press) 288: 40–51. arXiv:astro-ph/0302131. Bibcode2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329. 
  104. ^ M. Douglas, "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). arXiv:hep-th/0303194; S. Ashok and M. Douglas, "Counting flux vacua", JHEP 0401, 060 (2004).
  105. ^ Smith, Cameron; Davies, Evan T. (2012). Emigrating Beyond Earth: Human Adaptation and Space Colonization. Springer. p. 258 
  106. ^ Klein, Jan; Takahata, Naoyuki (2002). Where Do We Come From?: The Molecular Evidence for Human Descent. Springer. p. 395 
  107. ^ Carter, Brandon; McCrea, W. H. (1983). “The anthropic principle and its implications for biological evolution”. Philosophical Transactions of the Royal Society of London A310 (1512): 347–363. Bibcode1983RSPTA.310..347C. doi:10.1098/rsta.1983.0096. 
  108. ^ Greenberg, Joseph (1987). Language in the Americas. Stanford University Press. pp. 341–342 
  109. ^ McKay, Christopher P.; Toon, Owen B.; Kasting, James F. (8 August 1991). “Making Mars habitable”. Nature 352 (6335): 489–496. Bibcode1991Natur.352..489M. doi:10.1038/352489a0. 
  110. ^ Kaku, Michio (2010年). “The Physics of Interstellar Travel: To one day, reach the stars”. mkaku.org. 2010年8月29日閲覧。
  111. ^ Avise, John; D. Walker; G. C. Johns (1998-09-22). “Speciation durations and Pleistocene effects on vertebrate phylogeography”. Philosophical Transactions of the Royal Society B 265 (1407): 1707–1712. doi:10.1098/rspb.1998.0492. PMC 1689361. PMID 9787467. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1689361/bin/9787467s1.pdf. 
  112. ^ Valentine, James W. (1985). “The Origins of Evolutionary Novelty And Galactic Colonization”. In Finney, Ben R.; Jones, Eric M.. Interstellar Migration and the Human Experience. University of California Press. p. 274 
  113. ^ Crawford, I. A. (2000年7月). “Where are They? Maybe we are alone in the galaxy after all”. Scientific American. 2012年7月20日閲覧。
  114. ^ Bignami, Giovanni F.; Sommariva, Andrea (2013). A Scenario for Interstellar Exploration and Its Financing. Springer. p. 23 
  115. ^ Korycansky, D. G.; Laughlin, Gregory; Adams, Fred C. (2001). “Astronomical engineering: a strategy for modifying planetary orbits”. Astrophysics and Space Science 275: 349–366. doi:10.1023/A:1002790227314. Astrophys.Space Sci.275:349-366,2001. 
  116. ^ Korycansky, D. G. (2004). “Astroengineering, or how to save the Earth in only one billion years”. Revista Mexicana de Astronomía y Astrofísica 22: 117–120. http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_korycansky.pdf. 
  117. ^ “Hurtling Through the Void”. Time. (1983年6月20日). http://www.time.com/time/magazine/article/0,9171,926062,00.html 2011年9月5日閲覧。 
  118. ^ Glancey, Jonathan (2015-10-01). Concorde: The Rise and Fall of the Supersonic Airliner. Atlantic Books, Limited. ISBN 9781782391081. https://books.google.com.br/books?id=xJnlCQAAQBAJ&pg=PT211&lpg=PT211&dq=pioneer+10+barnard%27s+star&source=bl&ots=BA_LsJasQw&sig=3hJPNAfkb7TRMNPZ0DzYr3s6_rE&hl=pt-BR&sa=X&ved=0CCkQ6AEwAmoVChMI7Y7j4fOVyAIVSoGQCh0roQK9#v=onepage&q=pioneer%2010%20barnard's%20star&f=false 
  119. ^ Cornell News: "It's the 25th Anniversary of Earth's First (and only) Attempt to Phone E.T."”. Cornell University (1999年11月12日). 2008年8月2日時点のオリジナルよりアーカイブ。2008年3月29日閲覧。
  120. ^ Dave Deamer. “In regard to the email from”. Science 2.0. 2014年11月14日閲覧。
  121. ^ Pioneer 10 Spacecraft Nears 25TH Anniversary, End of Mission”. nasa.gov. 2013年12月22日閲覧。
  122. ^ SPACE FLIGHT 2003 – United States Space Activities”. nasa.gov. 2013年12月22日閲覧。
  123. ^ a b Voyager: The Interstellar Mission”. NASA. 2011年9月5日閲覧。
  124. ^ KEO FAQ”. keo.org. 2011年10月14日閲覧。
  125. ^ Lasher, Lawrence. “Pioneer Mission Status”. NASA. 2000年4月8日時点のオリジナルよりアーカイブ。 Template:Cite webの呼び出しエラー:引数 accessdate は必須です。 “[Pioneer's speed is] about 12 km/s... [the plate etching] should survive recognizable at least to a distance ~ 10 parsecs, and most probably to 100 parsecs.”
  126. ^ a b The Pioneer Missions”. NASA. 2011年9月5日閲覧。
  127. ^ LAGEOS 1, 2”. NASA. 2012年7月21日閲覧。
  128. ^ Jad Abumrad and Robert Krulwich (12 February 2010). Carl Sagan And Ann Druyan's Ultimate Mix Tape (Radio). National Public Radio.
  129. ^ The Long Now Foundation”. The Long Now Foundation (2011年). 2011年9月21日閲覧。
  130. ^ Memory of Mankind”. 2015年1月23日時点のオリジナルよりアーカイブ。 Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  131. ^ Human Document Project 2014”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  132. ^ Begtrup, G. E.; Gannett, W.; Yuzvinsky, T. D.; Crespi, V. H. et al. (13 May 2009). “Nanoscale Reversible Mass Transport for Archival Memory”. Nano Letters 9 (5): 1835–1838. Bibcode2009NanoL...9.1835B. doi:10.1021/nl803800c. http://www.physics.berkeley.edu/research/zettl/pdf/363.NanoLet.9-Begtrup.pdf. 
  133. ^ Zhang, J.; Gecevičius, M.; Beresna, M.; Kazansky, P. G. (2014). Seemingly unlimited lifetime data storage in nanostructured glass. 112. Phys. Rev. Lett.. p. 033901. Bibcode2014PhRvL.112c3901Z. doi:10.1103/PhysRevLett.112.033901. https://www.researchgate.net/profile/Jingyu_Zhang9/publication/260004721_Seemingly_Unlimited_Lifetime_Data_Storage_in_Nanostructured_Glass/links/00b4952fe470008630000000.pdf. 
  134. ^ Zhang, J.; Gecevičius, M.; Beresna, M.; Kazansky, P. G. (June 2013). “5D Data Storage by Ultrafast Laser Nanostructuring in Glass”. CLEO: Science and Innovations (Optical Society of America): CTh5D-9. http://www.orc.soton.ac.uk/fileadmin/downloads/5D_Data_Storage_by_Ultrafast_Laser_Nanostructuring_in_Glass.pdf. 
  135. ^ Tetrafluoromethane”. Toxicology Data Network (TOXNET). United States National Library of Medicine. 2014年9月4日閲覧。
  136. ^ Time it takes for garbage to decompose in the environment”. New Hampshire Department of Environmental Services. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  137. ^ Lyle, Paul (2010). Between Rocks And Hard Places: Discovering Ireland's Northern Landscapes. Geological Survey of Northern Ireland 
  138. ^ Weisman, Alan (2007-07-10), The World Without Us, New York: Thomas Dunne Books/St. Martin's Press, pp. 171–172, ISBN 0-312-34729-4, OCLC 122261590 
  139. ^ Apollo 11 -- First Footprint on the Moon”. Student Features. NASA. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  140. ^ Meadows, A. J. (2007). The Future of the Universe. Springer. pp. 81–83 
  141. ^ Weisman, Alan (2007-07-10), The World Without Us, New York: Thomas Dunne Books/St. Martin's Press, p. 182, ISBN 0-312-34729-4, OCLC 122261590 
  142. ^ Zalasiewicz, Jan (2008-09-25), The Earth After Us: What legacy will humans leave in the rocks?, Oxford University Press , Review in Stanford Archaeolog
  143. ^ a b c d e f g h i Meeus, J.; Vitagliano, A. (2004). “Simultaneous Transits”. Journal of the British Astronomical Association 114 (3). http://www.solexorb.it/SolexOld/Simtrans.pdf 2016年8月2日閲覧。. 
  144. ^ Why is Polaris the North Star?”. NASA. 2011年4月10日閲覧。
  145. ^ a b Plait, Phil (2002). Bad Astronomy: Misconceptions and Misuses Revealed, from Astrology to the Moon Landing "Hoax". John Wiley and Sons. pp. 55–56 
  146. ^ Falkner, David E. (2011). The Mythology of the Night Sky. Springer. p. 116 
  147. ^ Calculation by the Stellarium application version 0.10.2, http://www.stellarium.org 2009年7月28日閲覧。 
  148. ^ Kieron Taylor (1994年3月1日). “Precession”. Sheffield Astronomical Society. 2013年8月6日閲覧。
  149. ^ Falkner, David E. (2011). The Mythology of the Night Sky. Springer. p. 102 
  150. ^ Komzsik, Louis (2010). Wheels in the Sky: Keep on Turning. Trafford Publishing. p. 140 
  151. ^ Laskar, J. et al. (1993). “Orbital, Precessional, and Insolation Quantities for the Earth From ?20 Myr to +10 Myr”. Astronomy and Astrophysics 270: 522–533. Bibcode1993A&A...270..522L. 
  152. ^ Laskar. “Astronomical Solutions for Earth Paleoclimates”. Institut de mécanique céleste et de calcul des éphémérides. 2012年7月20日閲覧。
  153. ^ Aldo Vitagliano (2011年). “The Solex page”. University degli Studi di Napoli Federico II. 2012年7月20日閲覧。
  154. ^ James, N.D (1998). “Comet C/1996 B2 (Hyakutake): The Great Comet of 1996”. Journal of the British Astronomical Association 108: 157. Bibcode1998JBAA..108..157J. 
  155. ^ Horizons output. “Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)”. 2011年3月7日閲覧。
  156. ^ Borkowski, K.M. (1991). “The Tropical Calendar and Solar Year”. J. Royal Astronomical Soc. of Canada 85 (3): 121–130. Bibcode1991JRASC..85..121B. 
  157. ^ Bromberg, Irv. “The Rectified Hebrew Calendar”. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  158. ^ Strous, Louis (2010年). “Astronomy Answers: Modern Calendars”. University of Utrecht. 2011年9月14日閲覧。
  159. ^ Richards, Edward Graham (1998). Mapping time: the calendar and its history. Oxford University Press. p. 93 
  160. ^ Julian Date Converter”. US Naval Observatory. 2012年7月20日閲覧。
  161. ^ Permanent Markers Implementation Plan” (PDF). United States Department of Energy (2004年8月30日). 2006年9月28日時点のオリジナルよりアーカイブ。 Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  162. ^ Time: Disasters that Shook the World. New York City: Time Home Entertainment. (2012). ISBN 1-60320-247-1 
  163. ^ a b Fetter, Steve (2009年3月). “How long will the world's uranium supplies last?”. http://www.scientificamerican.com/article/how-long-will-global-uranium-deposits-last/ 
  164. ^ a b Ongena, J; G. Van Oost. “Energy for future centuries - Will fusion be an inexhaustible, safe and clean energy source?”. Fusion Science and Technology. 2004 45 (2T): 3–14. http://www.euro-fusionscipub.org/wp-content/uploads/2014/11/EFDR00001.pdf. 
  165. ^ Cohen, Bernard L. (January 1983). “Breeder Reactors: A Renewable Energy Source”. American Journal of Physics 51 (1): 75. Bibcode2005BGD.....2.1665F. doi:10.1119/1.13440. http://sustainablenuclear.org/PADs/pad11983cohen.pdf. 

Bibliography[編集]

Template:Millennia