英文维基 | 中文维基 | 日文维基 | 草榴社区
ここではベクトル解析の公式 r o t ( r o t F ) = g r a d ( d i v F ) − Δ F {\displaystyle {\mathsf {rot}}({\mathsf {rot}}\,\mathbf {F} )={\mathsf {grad}}({\mathsf {div}}\,\mathbf {F} )-\Delta \,\mathbf {F} } を証明する。
まず、ベクトル解析のナブラ ∇ を
∇ ≡ ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {\displaystyle \nabla \equiv {\tfrac {\partial }{\partial x}}\,\mathbf {i} +{\tfrac {\partial }{\partial y}}\,\mathbf {j} +{\tfrac {\partial }{\partial z}}\,\mathbf {k} =\left({\tfrac {\partial }{\partial {x}}},{\tfrac {\partial }{\partial {y}}},{\tfrac {\partial }{\partial {z}}}\right)}
と定義すると、回転 r o t {\displaystyle {\mathsf {rot}}} は単位ベクトル i, j, k を用いて
r o t F = ∇ × F = | i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z | = ( ∂ F z ∂ y − ∂ F y ∂ z ) i + ( ∂ F x ∂ z − ∂ F z ∂ x ) j + ( ∂ F y ∂ x − ∂ F x ∂ y ) k = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ F x ∂ y ) {\displaystyle {\begin{aligned}{\mathsf {rot}}\,\mathbf {F} &=\nabla \times \mathbf {F} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\tfrac {\partial }{\partial x}}&{\tfrac {\partial }{\partial y}}&{\tfrac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{vmatrix}}\\&=\left({\tfrac {\partial F_{z}}{\partial y}}-{\tfrac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\tfrac {\partial F_{x}}{\partial z}}-{\tfrac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\tfrac {\partial F_{y}}{\partial x}}-{\tfrac {\partial F_{x}}{\partial y}}\right)\mathbf {k} \\&=\left({\tfrac {\partial {F_{z}}}{\partial {y}}}-{\tfrac {\partial {F_{y}}}{\partial {z}}},{\tfrac {\partial {F_{x}}}{\partial {z}}}-{\tfrac {\partial {F_{z}}}{\partial {x}}},{\tfrac {\partial {F_{y}}}{\partial {x}}}-{\tfrac {\partial {F_{x}}}{\partial {y}}}\right)\end{aligned}}}
と表され、 r o t ( r o t F ) {\displaystyle {\mathsf {rot}}({\mathsf {rot}}\,\mathbf {F} )} は
となる。
また、ベクトル解析の勾配 g r a d {\displaystyle {\mathsf {grad}}} と発散 d i v {\displaystyle {\mathsf {div}}} を単位ベクトル i, j, k を用いてそれぞれ
g r a d F = ∇ F = ∂ F ∂ x i + ∂ F ∂ y j + ∂ F ∂ z k = ( ∂ F ∂ x , ∂ F ∂ y , ∂ F ∂ z ) {\displaystyle {\mathsf {grad}}\,\mathbf {F} =\nabla \mathbf {F} ={\tfrac {\partial \mathbf {F} }{\partial x}}\,\mathbf {i} +{\tfrac {\partial \mathbf {F} }{\partial y}}\,\mathbf {j} +{\tfrac {\partial \mathbf {F} }{\partial z}}\,\mathbf {k} =\left({\tfrac {\partial \mathbf {F} }{\partial {x}}},{\tfrac {\partial \mathbf {F} }{\partial {y}}},{\tfrac {\partial \mathbf {F} }{\partial {z}}}\right)}
d i v F = ∇ ⋅ F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z {\displaystyle {\mathsf {div}}\,\mathbf {F} =\nabla \cdot \mathbf {F} ={\tfrac {\partial {F_{x}}}{\partial {x}}}+{\tfrac {\partial {F_{y}}}{\partial {y}}}+{\tfrac {\partial {F_{z}}}{\partial {z}}}}
と表すと、 g r a d ( d i v F ) {\displaystyle {\mathsf {grad}}({\mathsf {div}}\,\mathbf {F} )} は
g r a d ( d i v F ) = ( ∂ 2 F x ∂ x 2 + ∂ 2 F y ∂ x ∂ y + ∂ 2 F z ∂ x ∂ z , ∂ 2 F x ∂ x ∂ y + ∂ 2 F y ∂ y 2 + ∂ 2 F z ∂ y ∂ z , ∂ 2 F x ∂ x ∂ z + ∂ 2 F y ∂ y ∂ z + ∂ 2 F z ∂ z 2 ) {\displaystyle {\mathsf {grad}}({\mathsf {div}}\mathbf {F} )=\left({\tfrac {\partial ^{2}F_{x}}{\partial x^{2}}}+{\tfrac {\partial ^{2}F_{y}}{\partial x\partial y}}+{\tfrac {\partial ^{2}F_{z}}{\partial x\partial z}},{\tfrac {\partial ^{2}F_{x}}{\partial x\partial y}}+{\tfrac {\partial ^{2}F_{y}}{\partial y^{2}}}+{\tfrac {\partial ^{2}F_{z}}{\partial y\partial z}},{\tfrac {\partial ^{2}F_{x}}{\partial x\partial z}}+{\tfrac {\partial ^{2}F_{y}}{\partial y\partial z}}+{\tfrac {\partial ^{2}F_{z}}{\partial z^{2}}}\right)}
と表される。したがって、 g r a d ( d i v F ) − Δ F {\displaystyle {\mathsf {grad}}({\mathsf {div}}\,\mathbf {F} )-\Delta \,\mathbf {F} } は
ここで、(1)式と(2)式は合同なので、 r o t ( r o t F ) = g r a d ( d i v F ) − Δ F {\displaystyle {\mathsf {rot}}({\mathsf {rot}}\,\mathbf {F} )={\mathsf {grad}}({\mathsf {div}}\,\mathbf {F} )-\Delta \,\mathbf {F} } が証明された。
Category:ベクトル解析 Category:数学に関する記事