コンテンツにスキップ

利用者:Taijun.Takeda/sandbox

A cubic plane curve given by

代数幾何学において、代数的閉体k上のアフィン多様体(あふぃんたようたい、英語: affine variety, アファイン多様体とも)とは、k上のn変数多項式環のある有限族の中で素イデアルIを生成するとき、そのような有限族のn次元アフィン空間kn上での零点集合のことをIにより定義されるアフィン多様体という。 この定義からIが素イデアルであるという条件を抜いたものは(アフィン)代数的集合と呼ばれるものであるので、アフィン多様体とは代数的集合の特殊な場合といえる。 また、ザリスキ位相についてのアフィン多様体の開集合準アフィン多様体(英語: quasi-affine variety)という。


In algebraic geometry, an affine variety over an algebraically closed field k is the zero-locus in the affine n-space of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subspace of an affine variety is called a quasi-affine variety.

Xを素イデアルIにより定義されるアフィン多様体とする。このとき商環(剰余環)

If X is an affine variety defined by a prime ideal I, then the quotient ring

X座標環という。この環は”すべてのX上の正則関数(代数幾何学)の集合”である;即ち、X構造層大域的切断の空間である。 Serreの定理(en:Serre–Swan theorem)により、アフィン多様体のコホモロジー的な特徴付けは次のように与えられる:代数多様体がアフィンであるとは、全てのおよび全てのX上のquasi-coherent sheaf Fに対して

is called the coordinate ring of X. This ring is precisely the set of all regular functions on X; in other words, it is the space of global sections of the structure sheaf of X. A theorem of Serre gives a cohomological characterization of an affine variety: that is, an algebraic variety is affine if and only if

が成り立つことと同値である。 (cf. Cartan's theorem B.)

for any and any quasi-coherent sheaf F on X. (cf. Cartan's theorem B.) This makes the cohomological study of an affine variety non-existent, in a sharp contrast to the projective case in which cohomology groups of line bundles are of central interest.

An affine variety plays a role of a local chart for algebraic varieties; that is to say, general algebraic varieties such as projective varieties are obtained by gluing affine varieties. Linear structures that are attached to varieties are also (trivially) affine varieties; e.g., tangent spaces.

An affine variety is, up to an equivalence of categories a special case of an affine scheme, which is precisely the spectrum of a ring. In complex geometry, an affine variety is an analog of a Stein manifold.

概要[編集]

The most concrete point of view to describe an affine algebraic variety is that it is the set of solutions in an algebraically closed field k of a system of polynomial equations with coefficients in k. More precisely, if are polynomials with coefficients in k, they define an affine variety (or affine algebraic set)

By Hilbert's Nullstellensatz, the points of the variety are in one to one correspondence with the maximal ideals of its coordinate ring, the k-algebra through the map where denotes the image in the quotient algebra R of the polynomial In scheme theory, this correspondence has been extended to prime ideals to define the affine scheme which may be identified to the variety, through an equivalence of categories.

The elements of the coordinate ring R are also called the regular functions or the polynomial functions on the variety. They form the ring of the regular functions on the variety, or, simply, the ring of the variety. In fact an element is the image of a polynomial which defines a function from kn into k; The restriction of f to the variety does not depend on the choice of among the polynomials mapped on by the quotient.

The dimension of a variety is a integer associated to every variety, and even to every algebraic set, whose importance relies on the large number of its equivalent definitions (see Dimension of an algebraic variety).

First properties[編集]

Let where A, B are integral domains that are the quotient of the polynomial ring , k an algebraically closed field.

  • A morphism of affine varieties: Each k-algebra homomorphism defines the continuous function by
.
Any function arises in this way is called a morphism of affine varieties. Now, if Y is k, then may be identified with a regular function. By the same logic, if , then can be thought of as an n-tuple of regular functions. Since , a morphism between affine varieties in general would have this form.
  • Any closed subset of an affine variety has the form ; in particular, it is an affine variety.
  • For any f in A, the open set is an affine subvariety of X isomorphic to . Not every open subvariety is of this form

Examples[編集]

  • Every closed subvariety of the affine space of codimension one is defined by a prime ideal of the polynomial ring of height one, which is principal; thus, they are hypersurfaces (i.e., defined by a single polynomial.)
  • C2 - 0 is an open subset of the affine variety that is not affine; cf. Hartogs' extension theorem
  • The normalization of an irreducible affine variety is affine; the coordinate ring of the normalization is the integral closure of the coordinate ring of the variety. (It turns out the normalization of a projective variety is a projective variety.)

Rational points[編集]

Tangent spaces[編集]

Tangent spaces may be defined just as in calculus. Let be the affine variety. Then the affine subvariety of defined by the linear equations

is called the tangent space at [1] (A more intrinsic definition is given by Zariski tangent space.) If the tangent space at x and the variety X have the same dimension, the point x is said to be smooth; otherwise, singular.

The important difference from calculus is that the inverse function theorem fails. To alleviate this problem, one has to consider the étale topology instead of the Zariski topology. (cf. Milne, Étale)

See also: Tangent space to a functor.

Notes[編集]

  1. ^ Milne & AG, Ch. 5

Reference[編集]

The original article was written as a partial human translation of the corresponding French article.

  • Hartshorne, Robin (1977), Algebraic Geometry英語版, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR0463157 
  • Milne, Algebraic geometry
  • Milne, Lectures on Étale cohomology