コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

圧縮 (関数解析学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数学関数解析学の分野において、あるヒルベルト空間からある部分空間 K への線型作用素 T圧縮(あっしゅく、: compression)とは、次の作用素のことを言う。

ここで K の上への直交射影である。これは全体のヒルベルト空間上のある作用素から、K 上のある作用素を得るために自然に用いられる。KT についての不変部分空間であるなら、TK への圧縮は kTk へ写す制限 K→K である。

より一般に、ヒルベルト空間 上のある線型作用素 T と、 の部分空間 上のある等長作用素 V に対して、T への圧縮は次のように定義される。

ここで V共役作用素である。T自己共役作用素であるなら、圧縮 もまた自己共役作用素である。V恒等作用素 で置き換えられるとき、 となり、上述の特殊な定義が得られる。

関連項目

[編集]

参考文献

[編集]
  • P. Halmos, A Hilbert Space Problem Book, Second Edition, Springer-Verlag, 1982.