コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

存在記号

出典: フリー百科事典『ウィキペディア(Wikipedia)』
存在限量子から転送)

存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。この記号()は1897年ジュゼッペ・ペアノによって導入された[1][2]

これとは対照的に全称記号は、全てのメンバーについての量化である。

概要

[編集]

例として、「ある自然数の平方が25である」を表す式を考える。最も素朴な方法として、次のように式を書いていく:

0·0 = 25, または 1·1 = 25, または 2·2 = 25, または 3·3 = 25, などなど

これは 「または」を繰り返しているので、一種の論理和となっている。しかし、「などなど」があるため形式論理の論理和であるとは言えない。その代わりに以下のような文を書く:

ある自然数 について、 である。

これは存在量化(existential quantification)を用いた、形式論理として妥当な単一の文である。

この文は前者の書き方よりも正確である点に注意されたい。前者は「などなど」が全ての自然数を指し、それ以外を含まないことを汲み取れはするが、明確には述べられていない。そのため、形式的表現に変換できない。一方、後者の量化された文では、自然数について明確に言及しているため、解釈の誤りは通常の場合生じない。

5 は自然数のもとで、5 を に代入すると "5·5 = 25" となり、式は真となる。"" が5以外の自然数 で偽となることは関係がない。少なくとも1つの解が存在すれば、存在量化で真となるに十分である。

一方、「ある偶数 について、 である」という文は、偶数の解が存在しないため偽となる。また、「ある奇数 について、 である」という文は、5 が奇数であるため真となる。この事実は変数 が取りうる値の範囲を示す「議論領域(domain of discourse)」が重要であることを示している。 何らかの述語を満たす値だけを議論領域としたい場合、存在量化では論理積を使用すればよい。 例として、「ある奇数 について、 である」という文は「ある自然数 について、 は奇数であり、かつ である」という文と論理的に同値である。この場合、「かつ」は論理積を表している。

数理論理学で存在量化を表す存在記号は ""(サンセリフ体の "E" を裏返した字)で表される。なお、これは英語で存在を意味するexistに由来する[要検証]。 故に、 が "" を表す述語で、 が自然数の集合であるとすると、

という論理式が以下の文を表すことになる[4]

ある自然数 について、 である。

同様に、 が 「 は偶数である」を表す述語とすると

という論理式が以下の文を表すことになる。

ある偶数 について、 である。

存在記号の各種記号法は全称記号の項目に参照されたし。

符号位置

[編集]
記号 Unicode JIS X 0213 文字参照 名称
U+2203 1-2-48 ∃
∃
∃
存在限定子

[編集]
  1. ^ Cajori, F. (1993). A History of Mathematical Notations. 689: Dover. ISBN 0-486-67766-4. https://books.google.co.jp/books?id=_byqAAAAQBAJ 
  2. ^ Formulaire de mathématiques - インターネット・アーカイブ
  3. ^ 新井敏康『数学基礎論』岩波書店、2011年、1頁。ISBN 978-4-00-005536-9 
  4. ^ この記法はより正確には
    の略記である[3]

関連項目

[編集]

参考文献

[編集]
  • Hinman, P. (2005年). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-568-81262-0