コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

強位相 (極位相)

出典: フリー百科事典『ウィキペディア(Wikipedia)』

函数解析学と関連する数学の分野において、強位相(きょういそう、: strong topology)とは、最も細かい英語版極位相、すなわちある双対組上で最大の開集合を伴う位相である。最も粗い英語版極位相は弱位相と呼ばれる。

定義

[編集]

を、実数 あるいは複素数 上のベクトル空間の双対組とする。 を、次に述べる意味で の元によって評価されているすべての部分集合 の系とする。

このとき、 上の強位相 は、次の形の半ノルムによって生成される 上の局所凸位相として定義される。

局所凸空間であるような特別な場合には、(連続)双対空間 (すなわち、すべての連続線型汎函数 の空間)上の強位相は、強位相 で定義され、それは 内の有界集合英語版の一様収束位相、すなわち次の形状の半ノルムによって生成される 上の位相と一致する。

ただし 内のすべての有界集合英語版の族について考えられる。この位相を備える空間 は、空間 強双対空間(strong dual space)と呼ばれ、 と記述される。

[編集]
  • ノルム線型空間であるなら、強位相を伴うその(連続)双対空間 は、バナッハ双対空間 、すなわち作用素ノルムによって誘起される位相を伴う空間 と一致する。逆に、 上の -位相は、 上のノルムによって誘起される位相と一致する。

性質

[編集]
  • 樽型空間であるなら、その位相は 上の強位相 や、組 によって生成される 上のマッキー位相と一致する。

参考文献

[編集]
  • Schaefer, Helmuth H. (1966). Topological vector spaces. New York: The MacMillan Company. ISBN 0-387-98726-6