コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

コラーゲン

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。ZairanTD (会話 | 投稿記録) による 2017年2月9日 (木) 16:53個人設定で未設定ならUTC)時点の版であり、現在の版とは大きく異なる場合があります。

コラーゲンドイツ語: Kollagen英語: collagen)は、主に脊椎動物の真皮靱帯軟骨などを構成するタンパク質のひとつ。多細胞動物の細胞外基質(細胞外マトリクス)の主成分である。体内に存在しているコラーゲンの総量は、ヒトでは、全タンパク質のほぼ30%を占める程多い。また、コラーゲンは体内で働くだけでなく人間生活に様々に利用されている。ゼラチンはコラーゲンを変性させたものであり、食品、化粧品医薬品など様々に用いられている。

コラーゲンの3重らせん構造

構造

コラーゲンタンパク質のペプチド鎖を構成するアミノ酸残基は、"―(グリシン)―(アミノ酸X)―(アミノ酸Y)―" と、グリシン残基が3残基ごとに繰り返す一次構造を有する。この配列は、コラーゲン様配列と呼ばれ、コラーゲンタンパク質の特徴である。例えば、I型コラーゲンでは、この "―(グリシン)―(アミノ酸X)―(アミノ酸Y)―" が1014アミノ酸残基繰返す配列を持っている。遺伝子配列では、プロリンコドンがグリシンのコドンの次に多く存在する。(アミノ酸Y)の位置にあるプロリン残基は、プロリル4ーヒドロキシラーゼによる翻訳後修飾によって、4(R)ヒドロキシプロリン(プロリンが酵素によって修飾されたもの)残基になる。コラーゲンタンパク質分子を構成する1本のペプチド鎖はα鎖と呼ばれ、分子量はI型コラーゲンの場合は、10万程度である。

コラーゲンでは、各ポリペプチド鎖が左巻きのポリプロリンII型様の構造をとり、一残基ずつずれてグリシン残基が中央に来るようにペプチド鎖が3本集まって緩い右巻きのらせん構造をとる。側鎖のないグリシンが3残基ごとにあることがコラーゲン構造を取る上での必要条件であり、骨形成不全症患者の場合、3残基ごとにあるグリシン残基が変異している症例が多い。I型コラーゲンの場合、分子の長さはおよそ300 nm、太さは1.5 nmほどである。

線維性コラーゲン分子が、少しずつずれてたくさん集まり、線維を作ったものをコラーゲン繊維(線維) (collagen fibril) と呼ぶ。例えば、骨や軟骨の中のコラーゲンは、このコラーゲン線維をつくっており、骨基質軟骨基質にびっしりと詰まっている。主成分は軟骨以外の組織ではI型コラーゲン、軟骨ではII型コラーゲン分子である。V/XI型コラーゲン分子やIX/XII/XIV型コラーゲンも含まれる。コラーゲン線維は透過型電子顕微鏡で観察することができる。コラーゲン線維には、ほぼ65 nm周期の縞模様が観察される。コラーゲン線維の太さは通常、数十〜百数十 nm程度である。この太さは、そのコラーゲン線維を作っているコラーゲンの各型の割合やプロテオグリカンなどによって決まることがわかっている。

コラーゲン線維は、さらに多くが寄り集まって、結合組織内で強大な繊維を形成する場合がある。解剖学の分野ではコラーゲン繊維(線維)(膠原繊維(線維);こうげんせんい、collagen fiber)と呼ばれることもある。生物学者はコラーゲン線維束と呼ぶことが多い。コラーゲン線維束の太さは数μm〜数十 μm程度で、適切な染色をおこなうと、光学顕微鏡でも観察することができる。

アミノ酸組成

I型コラーゲンのコラーゲン領域のアミノ酸組成はグリシン残基が1/3を占め、プロリン及びヒドロキシプロリン残基を合わせて21%、アラニン残基が11%とかなり偏った構成となっている。またコラーゲンに特有のアミノ酸残基として3-および4-ヒドロキシプロリン、5-ヒドロキシリジン残基などがある。これらは通常のプロリンリジン残基に水酸基が小胞体内での酵素によって翻訳後に修飾されたもので、他のタンパク中にはほとんど含まれない。3-ヒドロキシプロリン残基は、Gly-Xaa-Yaa-の繰り返し配列のXaaの位置に、4-ヒドロキシプロリン残基とヒドロキシリジン残基はYaaの位置にある。4-ヒドロキシプロリン残基量の測定から、動物組織のおよそのコラーゲン量を推測することができる。ヒドロキシプロリン残基は、コラーゲンの3本鎖らせん構造を安定化させる働きがある。ヒドロキシリジン残基の生理的な機能の詳細は明らかになっていないが、分子間架橋に関与して細胞外マトリックスを安定化させている。ヒドロキシリジン残基やヒドロキシリジン糖に修飾されるYaaのリジン残基の位置はランダムではない[1]

ヒドロキシプロリン・ヒドロキシリジン残基はいずれもタンパク合成の際に組み込まれるのではなく、まずそれぞれプロリン・リジン残基の形で合成され、タンパク鎖が形成された後で小胞体内で酸化酵素により付加される(翻訳後修飾)。またこの反応の際にはビタミンC補酵素として、補因子として必要とするため、L-グロノラクトンオキシダーゼ遺伝子の活性がないヒトではビタミンC欠乏によって正常なコラーゲン合成ができなくなり、壊血病を引き起こす。

機能

コラーゲンは、様々な結合組織に、力学的な強度を与えるのに役立っている。若干の弾力性もある。特に、腱の主成分は上述のコラーゲン繊維がきちんとすきまなく配列したもので非常に強い力に耐える。腱には、筋肉が発生した引っ張り力を骨などに伝え、運動を起こす際に非常に強い力がかかる。また、骨や軟骨の内部では、びっしりと詰め込まれたコラーゲン細繊維が、骨や軟骨の弾力性を増すのに役立っており、衝撃で骨折などが起こることから守っている。また、皮膚の弾力性や強度に役立っている、などである。

一方、こうした従来から知られている機能とは別に、コラーゲンが、それに接する細胞に対して、増殖、分化シグナルを与える、情報伝達の働きも担っていることがわかってきている。

起源

コラーゲンが地球で初めて誕生したのは、原生代後期の全球凍結後(6億〜8億年前)と考えられている。コラーゲンの産生には大量の酸素の供給が必要であるが、全球凍結以前は地球においてはコラーゲンを作り出せるだけの高濃度の酸素が蓄積されていなかった。そのためそれまでの生物の進化は単細胞生物までに留まっていた。そして全球凍結の状態が終わり、急激な気候変動の影響で大量に酸素が作られ地球に蓄積した。この影響により単細胞生物がコラーゲンを作り出す事に成功し、細胞同士の接着に利用され、単細胞生物の多細胞化が促進された。今日に見られる多細胞生物(動物・植物・原生生物・真菌類)は全てこのコラーゲンの生産に成功した種の子孫であると考えられている。(ただしその子孫である植物は細胞間接着にコラーゲンを用いず、セルロースを用いており、コラーゲンを細胞間接着として利用している生物は動物と一部の原生生物に限られている)

種類と分布

脊椎動物は30種近くのコラーゲンタンパク質を有することが報告されており、それぞれのコラーゲンはI型、II型のようにローマ数字を使って2007年時点で28の型に分類されている。真皮靱帯などではI型コラーゲンが、関節軟骨ではII型コラーゲンが主成分である。また、すべての上皮組織の裏打ち構造である基底膜にはIV型コラーゲンが主に含まれている。体内で最も豊富に存在しているのはI型コラーゲンである[2][3][4]

これらのコラーゲンタンパク質は、すべてがコラーゲン細線維を形成するタイプではない。コラーゲン細線維の主成分となるタイプのコラーゲンタンパク質は "線維性コラーゲン"、線維を形成しないものを "非線維性コラーゲン" と呼ぶ。非線維性コラーゲンでは、コラーゲン線維の表面に結合するFACIT(Fibril Associated Collagens with Interrupted Triple helices)や基底膜構造の主成分となる非常に細い網目構造を作るものや、細胞膜に結合して存在するコラーゲンもある。

下記は、ヒトのコラーゲンの各型の性質と主な分布である。(一部)

I型コラーゲン
I型コラーゲン
線維性コラーゲン。脊椎動物では最も大量に存在するコラーゲン。骨に大量に含まれ、骨に弾力性を持たせるのに働いている。皮膚の真皮にも非常に多く、皮膚の強さを生み出す働きがある。I型コラーゲンは、α1鎖(I型) 2本とα2鎖(I型)1本が集まって形成される。多くの組織でコラーゲン細線維、さらにはそれが集まったコラーゲン線維の主成分である。
II型コラーゲン
線維性コラーゲン。硝子軟骨のコラーゲン線維の主成分。眼球硝子体液の成分でもある。II型コラーゲンは、3本のα1(II型)鎖から構成されるホモトライマーである。
III型コラーゲン
線維性コラーゲン。I型コラーゲンの存在する組織にはIII型コラーゲンも共存する場合が多い。真皮や大動脈に多い。III型コラーゲンは、コラーゲン線維とは別の、細網線維(さいもうせんい)と呼ばれる細い網目状の構造を形成し、細胞などの足場を作っている。創傷治癒過程の初期段階で増殖し、やがてI型コラーゲンに置き換わる事で治癒が進むといわれる。
IV型コラーゲン
非線維性コラーゲン。基底膜を構成する主成分であり、網目状のネットワークを形成し、基底膜の骨格構造を支えている。基底膜は上皮組織の裏打ち構造で、上皮細胞の足場になる。
V型コラーゲン
線維性コラーゲン。I型コラーゲン、III型コラーゲンの含まれている組織に、少量含まれている。V型コラーゲンは、α1(V型)鎖、α2(V型)鎖、α3(V型)鎖が様々な割合で混合した三量体の混合物である。無脊椎動物の線維性コラーゲンは、V型に近い。
VI型コラーゲン
非線維性コラーゲン。4分子が2本ずつ逆向きに会合したものが四量体を形成し、それが

する。細線維(マイクロフィブリル)の成分である。細線維は、コラーゲン細線維とは別の線維状構造で、直径13 nm程度で細胞外基質に存在する。

VII型コラーゲン
非線維性コラーゲン。皮膚の表皮と真皮の境界の基底膜近傍に存在する。VII型コラーゲン遺伝子COL7A1の以上は栄養障害型表皮水疱症となる。
VIII型コラーゲン
短鎖コラーゲン(short chain collagen)と呼ばれる。血管内皮細胞などがつくっている。また盛んに形態形成が起こっている組織で多くつくられている。
IX型コラーゲン
FACITコラーゲン。軟骨のコラーゲン線維に結合している。3本のα鎖(a1(IX), a2(IX), a3(IX))が1本ずつからできるヘテロトライマーである。
X型コラーゲン
短鎖コラーゲン(short chain collagen)と呼ばれる。肥大軟骨層に多く存在する。遺伝子の異常は骨の成長に影響を与える。
XI型コラーゲン
線維性コラーゲン。軟骨のコラーゲン線維に主に存在する。V型コラーゲンと非常によく似たタイプ。
XV型コラーゲン
XVIII型コラーゲンとドメイン構造がよく似ている。multiplexinマルチプレキシン型コラーゲン。
XVII型コラーゲン
非線維性コラーゲン。別名、BP180BPAG2。遺伝子はCOL17A1上皮細胞などがつくる膜貫通タンパク質(transmembrane protein)で、細胞結合の1つ・半接着斑(ヘミデスモソーム)の細胞接着分子である。関連疾患として、水疱性類天疱瘡(bullous pemphigoid:BP)、接合部型表皮水疱症(junctional epidermolysis bullosa)がある。
XVIII型コラーゲン
COL18A1遺伝子にコードされるホモトリマー。血管基底膜に存在する。700残基ほどのコラーゲン性領域を有する。分子のC末端側に183残基約20kDaほどのエンドスタチンと呼ばれる血管新生を阻害する作用を持つ領域がある。XV型同様multiplexinに分類される。
(以下 略)

その他、コラーゲンタンパク質の特徴を部分的に備えた "コラーゲン様領域" を有するタンパク質が15種類以上知られている。例えば、補体のC1q、コレクチン、フィコリン、アディポネクチン、マクロファージスカベンジャー受容体などがそれである。これらは部分的にコラーゲンの機能をあわせ持つタンパク質と考えられている。

生合成

細胞内でのコラーゲンの産生には、様々な酵素分子やシャペロン分子が関与している。ヒトのコラーゲンのなかでは最も大量に存在するI型コラーゲン分子の場合、COL1A1COL1A2の2種類の遺伝子から合成されたmRNAが細胞質中のリボソームによって翻訳が開始され、翻訳されたシグナルペプチドシグナルリコグニションパーティクル(signal recognition particle: SRP)によって翻訳が停止した後、粗面小胞体 (rER)にリボソームが結合してSRPが遊離して翻訳が再開され、小胞体内腔に取り込まれ、ゴルジ体に輸送され修飾を受けた後、細胞外に分泌される。小胞体内でC-プロペプチドによってプロα1(I)鎖とプロα2(I)鎖が通常は2:1の比でプロテインジスルフィドイソメラーゼ(PDI)EC 5.3.4.1の触媒反応によって鎖間ジスルフィド結合を形成する。3本鎖を巻く過程で、プロコラーゲン-プロリンジオキシゲナーゼ(プロリル4ーヒドロキシラーゼ)によって、-Gly-Xaa-Yaa-のYaaの位置にあるプロリン残基が水酸化されて4-ヒドロキシプロリン残基になる。そのほかに、Xaaの位置のプロリン残基を修飾するプロリル3ーヒドロキシラーゼ(P3H1, P3H2, P3H3)や、リジルヒドロキシラーゼ1-3 (Lysyl hydroxylase, procollagen-lysine 5-dioxygenase)、ヒドロキシリジン残基にガラクトース残基を付加するガラクトシラーゼ、ガラクトシルヒドロキシリジン残基にグルコース残基を付加するグルコシラーゼといった翻訳後修飾酵素が必要である。また小胞体内のタンパク質サイクロフィリンbやCRTAPの劣性遺伝子変異が骨形成不全症を引き起こすことが知られている[5][6]

いくつかの型のコラーゲンにおいては、Hsp47という分子シャペロンが正常なコラーゲン分子の合成に必須であることが報告されている[7]。また、I型コラーゲンとHSP47の発現量は、常に相関することも知られている。

胚性幹細胞培養

コラーゲンは、ES-D3株などの胚性幹細胞を無血清条件で培養する際にディッシュにコーティングすることで幹細胞の足場となり、幹細胞の未分化性維持および幹細胞の増殖を促進する働きがあることが論文により報告されている[8]。また、米国国立衛生研究所(NIH)による2006年の報告ではヒト胚性幹細胞の無血清培養を行う際にはラミニン-111とIV型コラーゲンを主成分とするマトリゲルによる培養を行うことで胚性幹細胞の未分化性を維持した状態で増殖させる手法が多数紹介されている。同時に精製されたラミニン (laminin) あるいはIV型コラーゲンを使用した培養法が存在することについて述べられている。

As it is mostly comprised of laminin and collagen, these molecules have also been used, in purified form, to avoid lot-to-lot variations in the Matrigel extract. [9]

産業利用

ヒト型水溶性コラーゲン

I型コラーゲンの三重鎖は2本のα1ペプチド鎖と1本のα2ペプチド鎖がらせん状に絡み合った構造で出来ている。ヒト培養細胞よりこのα1ペプチド鎖をコードする遺伝子を抽出し、分子生物学的技術によりモデル生物へ組み込むことで効率的にヒトのα1ペプチド鎖のみを作らせる技術が樹立されている。得られたヒトα1ペプチド鎖は水溶性であることからヒト型水溶性コラーゲンと呼ばれている[10]

ゼラチン

ゼラチンは、高温(哺乳類から抽出されたもので40度前後、魚類から抽出されたものではそれより低い温度)で変性させたコラーゲンである。コラーゲンのらせん構造は、高温では壊れて三量体が解離し、立体構造が変わったトロポコラーゲンが遊離する。これは、水に溶けるなど、コラーゲンとは異なった物理的・化学的性質を示し、ゼラチンと呼ばれる。ゼラチンは、コラーゲン配合と表記されている化粧品や補助食品、あるいはゼリーの原料として用いられる。主な原料はウシやブタなどの大動物の皮膚、骨などや魚類である。乾燥する際の形状によって板ゼラチンと粉ゼラチンに分かれる。

コラーゲンらせん構造のフォールディングとアンフォールディング反応には、濃度依存性および履歴現象がある。低濃度のコラーゲン溶液を用いた実験では、変性温度が単離した動物の体温以下になることが知られている。

アテロコラーゲン

コラーゲンの両端には、コラーゲンの主たる抗原部位であるテロペプチドが存在する。この部分を酵素処理で取り外すと、コラーゲンの抗原性が極端に低くなる。これをアテロコラーゲンと呼び、医療用のインプラント材料や組織工学用の足場材料に応用されている。また、一部の化粧品にも利用されている。

コラーゲンペプチド

コラーゲンペプタイドとも呼ばれる。コラーゲンを酵素処理で分解し、低分子化したもので、食品として摂取した場合、体内でアミノ酸に分解しやすいため、吸収性が高められている。ゼラチン同様に水溶性を持つが、ゼラチンのように低温でゲル化させる性質はない。健康食品として摂取されたり、保湿性があるために、化粧品原料にも用いられる。原料として、ウシ、ブタなどの家畜の他に、ヒラメサケスズキなどの魚類の皮やを使う例が多い。産業原料として、粉末の他、水溶液で流通する場合もある。

非変性コラーゲン

コラーゲンを変性させずに抽出されたもの。ハーバド大学の研究では、II型の非変性コラーゲンが免疫寛容によって関節の炎症が抑えられることがわかっている。シニア向けの健康食品として摂取されている。原料として、主に鶏の軟骨であったが、近年、アルカリ溶液による抽出方法の発見と、サケの鼻軟骨を原料とすることにより、生産の低コスト化が実現した。

消化、吸収

タンパク質の一種であるコラーゲンのアミノ酸残基は、グリシンが約1/3、プロリンおよび(プロリンが水酸化されたものである)ヒドロキシプロリンがそれぞれ約10%、残りがその他のアミノ酸で構成されている。タンパク質は消化に際して、アミノ酸モノマーやアミノ酸残基2個から数個程度のオリゴペプチドまで分解された後に吸収される。ただし、食品アレルギーで明らかなように、摂取されたタンパク質はある程度の割合で、もっと大きなペプチド状態で腸に達する。コラーゲンを摂取しても、直接、元の大きさの分子が腸壁から吸収される率は低い。ヒドロキシプロリンおよびヒドロキシプロリン残基を含むオリゴペプチドが真皮のコラーゲンを作る線維芽細胞やその他の臓器の細胞に対して、どのような生理的作用(成長因子やコラーゲンを含めたタンパク質合成、細胞移動など)があるかは、まだほとんど明らかになっていない。

近年では、ヒドロキシプロリン残基を含むペプチドは細胞の働きを活性化させる様々な生理的活性が報告されている。コラーゲンを経口摂取することでヒドロキシプロリンペプチドの血中濃度が長時間上昇すること、ペプチドが線維芽細胞を刺激し再生を促進することが明らかとなった[11][12]。正常なコラーゲン分子の合成には、2価のイオンやビタミンCが別途必要である。

美肌効果と関節等への作用について

コラーゲンを多く含む健康食品が、しばしば皮膚の張りを保つ、関節の痛みを改善すると謳い、「個人の感想」との注釈や「体験談」の説明付きで販売されている。しかし、ヒトでの信頼できるほどの有効性について国立健康・栄養研究所はコラーゲンを食べても「美肌」「関節」に期待する効果が出るかどうかは不明であるとの見解を示している[13]。コラーゲンには必須アミノ酸トリプトファン残基が含まれておらず、アミノ酸スコアは0である。また、栄養素としてコラーゲンの生成に必要な量を摂取したとしても、体内でコラーゲンが生成されるかはタンパク質をアミノ酸に消化分解する異化 (生物学)、アミノ酸からタンパク質を構築する同化 (生物学)の機能による。

京都府立大の佐藤健司教授らの研究グループは、コラーゲンを経口摂取することでヒドロキシプロリンペプチドの血中濃度が長時間上昇する、ペプチドが損傷した線維芽細胞を刺激し再生を促進するとの研究結果を発表した[14][11]。ただし、体内におけるコラーゲンの合成にはリシンビタミンCが別途必要である。また、一部の臨床的症状で6週間の摂取で赤み、弾力性、しわが改善された有効性が認められたという論文[15][16] も提出されるなど間接的な経路によってコラーゲンペプチドが体内でのコラーゲン線維の新生に寄与する可能性は示唆されている。

春日井・小山 (2004) において、コラーゲン摂取群と対照群の間に皮膚の水分量に有意な差はなかったが角層給水能は上昇しており他の研究グループからも同様の報告があるとしている。一方、骨粗しょう症関連として踵の骨密度と骨代謝マーカー(骨型アルカリファスファターゼ、オステオカルシン、血中Ca、ピリジノリン、デオキシピリジノリン) の測定が行われたが、コラーゲン摂取群と対照群のこれら測定値の間に有意な差は認められないとされた[17]

コラーゲンを含む食品としては、肉類(特に、皮・軟骨・骨・筋。鶏皮鶏軟骨スジ肉)、魚類(特に、皮・骨。サケうなぎ)、ゼラチンゼリー増粘多糖類ではなくゼラチンで作ったものに限る)が挙げられている[18]

コラーゲンを配合した化粧品が数多く販売されている。コラーゲンは保湿効果が高いタンパク質であり、コラーゲン分子は3残基ごとに繰り返すグリシン以外の残基がすべて分子表面に露出しており周囲に多くの水分子を保持できる。皮膚表面に塗布することにより、皮膚からの水分の蒸発を抑えるという肌の表皮層に対する潤いの効果は期待できる。ただし、この場合も皮膚に塗布したコラーゲン分子がそのままの形で皮下に吸収・利用されることは考えにくい[19]

脚注

  1. ^ Taga, Yuki, et al.. “Site-specific quantitative analysis of overglycosylation of collagen in osteogenesis imperfecta using hydrazide chemistry and SILAC”. Journal of proteome research 12 (5): 2225-2232. doi:10.1021/pr400079d. PMID 23581850. 
  2. ^ Ricard-Blum, Sylvie, and Florence Ruggiero (2005). “The collagen superfamily: from the extracellular matrix to the cell membrane”. Pathologie Biologie 53 (7): 430-442. doi:10.1016/j.patbio.2004.12.024. PMID 16085121. 
  3. ^ Kadler, Karl E., et al. (2007). “Collagens at a glance”. Journal of cell science 120 (12): 1955-1958. doi:10.1242/jcs.03453. PMID 17550969. 
  4. ^ Myllyharju, Johanna, and Kari I. Kivirikko (2004). “Collagens, modifying enzymes and their mutations in humans, flies and worms”. TRENDS in Genetics 20 (1): 33-43. doi:10.1016/j.tig.2003.11.004. PMID 14698617. 
  5. ^ Byers P (2012) “Recessively inherited forms of osteogenesis imperfecta.”Annu Rev Genet. 46, 475-97 PMID 23145505
  6. ^ Forlino A (2011)“New perspectives on osteogenesis imperfecta.” Nat Rev Endocrinol 7, 540-57. PMID 21670757
  7. ^ Nagai, N., et al.(2000)"Embryonic Lethality of Molecular Chaperone Hsp47 Knockout Mice Is Associated with Defects in Collagen Biosynthesis"The Journal of Cell Biology 150(6), 1499–1505. PMID 10995453
  8. ^ Furue, Miho, et al. (2005). “Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells”. In Vitro Cellular & Developmental Biology-Animal 41 (1-2): 19-28. doi:10.1290/0502010.1. 
  9. ^ Mallon, Barbara S., et al. (2006). “Toward xeno-free culture of human embryonic stem cells”. The international journal of biochemistry & cell biology 38 (7): 1063-1075. doi:10.1016/j.biocel.2005.12.014. http://stemcells.nih.gov/StaticResources/research/Xeno-free_hESC.pdf. 
  10. ^ ヒトコラーゲン 驚異の「美肌再生法」―エステ界が待望した夢の化粧品!!”. 三木 敬三郎 (著) 1977年ハーバード大学医学部主席研究員。1992年テルモ(株)医科学研究所所長(~1996) (2010年10月25日). 2011年12月27日閲覧。
  11. ^ a b 京都新聞 2009年1月24日
  12. ^ 小山洋一 天然素材コラーゲンの機能性
  13. ^ 「健康食品」の安全性・有効性情報 独立行政法人 国立健康・栄養研究所
  14. ^ たるみに効く コラーゲンのとり方 |ヘルス|NIKKEI STYLE 日経新聞 2012年11月11日記事
  15. ^ (診療と新薬・第41巻第12号)
  16. ^ 「コラーゲン10000mg含有飲料」の摂取による肌に対する効果試験 - 論文実績紹介 総合健康開発研究所
  17. ^ 春日井昇平, 小山洋一 (2004). “コラーゲン経口摂取が結合組織 (骨, 皮膚) におよぼす作用”. コスメトロジー研究報告 12: 107-112. http://www.cosmetology.or.jp/research_report/archives/2004/overview/12-21.pdf. 
  18. ^ 20代から50代日本人女性における食事由来コラーゲン推定摂取量の特徴 野口知里ほか
  19. ^ 石見佳子 (2004年11月4日). “コラーゲンの安全性と機能性”. 国立健康・栄養研究所. 2015年5月23日閲覧。

関連項目