コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

「関数型プログラミング」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Slappi (会話 | 投稿記録)
m編集の要約なし
 
(27人の利用者による、間の227版が非表示)
1行目: 1行目:
{{プログラミング・パラダイム}}
{{独自研究|date=2014年4月}}
'''関数型プログラミング'''(かんすうがたプログラミング、{{lang-en-short|functional programming}})とは、[[関数 (数学)|数学的な意味での関数]]を主に使うプログラミングのスタイルである<ref name="名前なし-1">{{harvnb|本間|類地|逢坂|2017|p=3}}</ref>。 functional programming は、'''関数プログラミング'''(かんすうプログラミング)などと訳されることもある<ref name="名前なし-2">{{harvnb|本間|類地|逢坂|2017|p=2}}</ref>。
{{プログラミング言語|index=かんすうかたけんこ}}
[[ファイル:Orange_lambda.svg|代替文=|境界|右|フレームなし|167x167ピクセル]]


{{Visible anchor|'''関数型プログラミング言語'''|関数型言語|FP}}({{lang-en-short|functional programming language}})とは、関数型プログラミングを推奨している[[プログラミング言語]]である<ref name="名前なし-1"/>。略して'''関数型言語'''({{lang-en-short|functional language}})ともいう<ref name="名前なし-1"/>。
<!-- 本節はHaskellやLISPに偏重しすぎ -->
'''関数型言語'''({{lang-en-short|''functional language''}})は、'''関数型プログラミング'''のスタイルまたは[[プログラミングパラダイム|パラダイム]]を扱う[[プログラミング言語]]の総称である。関数型プログラミングは関数の[[写像|適用]]と[[関数の合成|合成]]から組み立てられる[[宣言型プログラミング]]の一種であり、関数は[[引数]]の適用から先行式の[[評価戦略|評価]]を後続式の適用に繋げて終端評価に到る[[式 (プログラミング)|式]]の[[ツリー構造|ツリー]]として定義される。関数は引数ないし返値として渡せる[[第一級関数]]として扱われる。


== 概要 ==
関数型プログラミングは[[数理論理学]]と[[圏論]]を主にした数学分野をルーツにし、関数[[形式体系]]の[[ラムダ計算]]と[[コンビネータ論理]]を幹にして構築され、[[LISP]]言語が実装面の先例になっている。関数の数学的な純粋性を追求した純粋関数型言語も存在する。純粋関数型パラダイムでは[[参照透過性]]が最重視され[[モナド (プログラミング)|モナド]]などの特別な[[型システム]]が導入されている。また{{誰範囲|date=2020年5月|{{要出典範囲|date=2020年5月|[[並行計算]]パラダイムでは純粋関数が重視されている}}}}。[[マルチパラダイムプログラミング言語|マルチパラダイム]]言語での導入例では、単に有用な構文スタイルとして扱われている事が多い。[[高階関数]]と[[第一級関数]]、[[クロージャ]]または[[無名関数]]、関数合成と部分適用、{{要出典範囲|ポイントフリーまたは[[パイプライン処理|パイプライン]]|date=2020年5月}}、[[イテレータ|イテレーション]]またはリスト処理、[[型推論]]、[[多態性|パラメータ多相]]とアドホック多相、[[パターンマッチング]]、[[束縛変数]]と[[イミュータブル]]などが{{誰範囲|date=2020年5月|関数型プログラミングのスタイル要素として挙げられる}}。


関数型プログラミングは、[[関数 (数学)|関数]]を主軸にしたプログラミングを行うスタイルである<ref name="名前なし-1"/>。ここでの関数は、数学的なものを指し、引数の値が定まれば結果も定まるという[[参照透過性]]を持つものである<ref name="名前なし-1"/>。
== 特徴 ==


'''参照透過性'''とは、数学的な関数と同じように同じ値を返す式を与えたら必ず同じ値を返すような性質である<ref name="名前なし-1"/>。次の <code>square</code> 関数は、 <code>2</code> となるような式を与えれば必ず <code>4</code> を返し、 <code>3</code> となるような式を与えれば必ず <code>9</code> を返し、いかなる状況でも別の値を返すということはなく、これが参照透過性を持つ関数の一例となる<ref name="名前なし-1"/>。
ここでは関数型プログラミング本来の構文スタイルを元にして説明する。式を基本文にする関数型に対して、[[文 (プログラミング)|ステートメント]]を基本文にする[[手続き型プログラミング|手続き型]]や[[オブジェクト指向プログラミング|オブジェクト指向]]などの[[命令型プログラミング]]言語では必要に応じて構文スタイルを変えて実装されている。代表的なのは「式の引数への適用」に対する「引数を関数に渡す」である。ただし双方ともアセンブリコード上では同様に符号化される。[[代数的データ型]]も[[構造体]]や[[連結リスト]]で置き換えられているのが通例である。


<syntaxhighlight lang="python" >
=== 式と関数 ===
def square(n):
{{出典の明記|date=2020年5月6日 (水) 02:29 (UTC)|section=1}}
return n ** 2
*関数型プログラムの基本文は[[式 (プログラミング)|式]](''expression'')である。式は[[第一級オブジェクト]]と同等である。
</syntaxhighlight>
*式は、値(''value'')と演算子(''operator'')と関数(''function'')で構成される。式内の代数部分が確定される前の式は抽象値と同義であり、確定後の式は実値と同義になる。ここでの代数とは式内の各束縛変数と、同じく式内の各関数の引数の双方を指す。実値の導出過程は評価(''evaluation'')と呼ばれる。
*式は値と同一視されるので、上述の式と値は相互再帰の関係にある。式内の値は他の式の評価値である事があり、その式内にもまた他の値があるといった具合である。
*式評価値の後続への反映は変数への代入ではなく、[[束縛変数]]で定数化するのが{{要出典範囲|本来の在り方である|date=2020年5月}}。
*任意の後続式の[[自由変数と束縛変数|自由変数]]の記述を省略して自動的に引数または先行式の評価値を適用する構文がしばしば用いられる。これはポイントフリーまたは[[パイプライン処理|パイプライン]]と呼ばれる。
*関数も値と同一視される。関数は式に引数(''parameter'')を結び付けるものである。式の代数部分に引数値が順次束縛され、式ツリーの終端式が評価値になる。
*関数は、式の引数への適用(''application'')と解釈される。{{要出典範囲|その対義概念として反適用(''unapply'')の仕組みも存在する。これは式の引数への適用を差し戻して元の引数を抽出する|date=2020年5月}}。
*関数は、式を第1引数に適用したもの→第2引数に適用したもの→第x引数に適用したもの→評価値、という形をとる。引数を1個ずつ適用する形態は[[カリー化]]と呼ばれる。
*2個以上の引数を同時適用する非カリー化の関数も用いられる。無名関数がしばしばそれになる。この場合は部分適用やポイントフリーが制限される。
*関数は名前付きと名前無しの二通りある。後者はラムダ抽象を模した構文で式中に直接定義される。これは[[クロージャ]]または[[無名関数]]と呼ばれる。
*関数の引数値を関数にする事も可能であり、また関数の評価値を関数にする事も可能である。他の関数を引数値または評価値として扱える関数は[[高階関数]]と呼ばれる。他の関数から引数値または評価値として扱われる関数は[[第一級関数]]と呼ばれる。
*関数式の引数適用を任意の段階で保留して残り引数の適用を待つ第一級関数を生成できる。これは部分適用と呼ばれる。
*片方の評価値と片方の第1引数が同じ型の両関数を合わせて双方の写像をつなげた第一級関数を生成できる。これは関数合成と呼ばれる。
*演算子はデフォルトの式内容を持ち、引数が1~2個に限定された関数と同義である。演算子も部分適用でき、セクションと呼ばれる第一級関数になる。言語や演算子によるが、演算子は任意に再定義、追加ができる([[利用者定義演算子]])。


次の <code>countup</code> 関数は、同じ <code>1</code> を渡しても、それまでに <code>countup</code> 関数がどのような引数で呼ばれていたかによって、返り値が <code>1</code>, <code>2</code>, <code>3</code>, ... と変化するため、引数の値だけで結果の値が定まらないような参照透過性のない関数であり、数学的な関数とはいえない<ref name="名前なし-1"/>。
=== 代数的データ型 ===
{{出典の明記|date=2020年5月6日 (水) 02:30 (UTC)|section=1}}
*値(''value'')はときに代数的データ型(''algebraic data type'')として表現される。これは[[直積集合|直積]]、[[非交和]]、[[再帰]]の構造を持ち、単体値を兼ねたあらゆる値集合の汎用表現になる。代数的データによって単体値と値集合を同等に扱うスタイルが関数型プログラミングの代表的利点であるリスト処理([[イテレータ|イテレーション]])に繋がっている。
<!-- *代数的データ型は、''atom(プリミティブ)nil(無)cons(内包値+リンク)''の要素で実装される。''atom''は数値、論理値、文字、文字列を指す。''cons''の''内包値''は''atom''または次の''cons(=''入れ子の代数的データ)を指し、''cons''のリンクは次の''cons''または''nil''(=終端)を指す。代数的データは''cons''の再帰で構成されてゼロ個から複数以上の値を内包する事になる。この再帰ツリー構造は[[S式]]と呼ばれる。 --> <!-- LISPの用語に頼りすぎ。S式に至っては他言語にはない -->
*値は型(''type'')によって分類される。
*全ての値が同じ型の代数的データは''list''と呼ばれ、異なる場合は''tuple''と呼ばれる。''list''は用法的に[[線形リスト]]と同義であり、''tupleは用法によっては''[[構造体]]の近似物になる。後者は前述の[[直積集合|直積]]である。
*型選択している代数的データは''variants''などと呼ばれ、[[共用体]]ないし[[列挙型]]の類似物になる。これは前述の[[非交和]]である。
*前述の再帰は代数的データの[[ネスティング|入れ子構造]]を表現できる。その入れ子はパラメータ多相で[[総称型]]にできる。
*値は式評価の束縛と解釈される傾向から値の型宣言は省略される傾向にある。<!-- プログラマによるしHaskellでは記述が推奨されている -->。型を自動的に導き出す機能は[[型推論]]と呼ばれる。型推論と[[多態性|パラメータ多相]]はよく併用される。


<syntaxhighlight lang="python" >
=== 再帰と評価戦略とパターンマッチング ===
counter = 0
*反復構造は変数代入したカウンタを増減するループ文ではなく再帰で表現するのが好まれる。カウンタは再帰呼び出し時に、引数として与えて操作するか、イテレーションを用いる。
def countup(n):
*選択構造では関数の引数値による[[パターンマッチング]]が多用される。[[真理値]]による単純な比較など、パターンマッチングでは大げさな場合は[[if文]]も用いられる。
global counter
counter += n
return counter
</syntaxhighlight>

関数型プログラミングは、参照透過性を持つような数学的な関数を使って組み立てた'''式'''が主役となる<ref name="名前なし-1"/>。別の箇所に定義されている処理を利用することを、手続き型プログラミング言語では「関数を実行する」や「関数を呼び出す」などと表現するが、関数型プログラミング言語では「式を評価する」という表現も良く使われる<ref name="名前なし-3">{{harvnb|本間|類地|逢坂|2017|p=4}}</ref>。


=== 参照透過性 ===
=== 参照透過性 ===
純粋関数型言語は、[[参照透過性]]の遵守をプログラムの枠組みにしている。参照透過性の意味自体はシンプルであり、関数は同じ引数値に対して必ず同じ評価値を恒久的に導出し、その評価過程においてプログラムの認知内における一切の情報資源に作用を及ぼさない、というものである。プログラムが認知する範囲内のいずれかの情報資源が変化するのと同時にいずれかの関数の評価過程も変化してしまう現象が[[副作用 (プログラム)|副作用]]と呼ばれる。


{{main|参照透過性}}
=== 型システム ===


参照透過性とは、同じ値を与えたら返り値も必ず同じになるような性質である<ref name="名前なし-1"/>。参照透過性を持つことは、その関数が'''状態を持たない'''ことを保証する<ref name="名前なし-4">{{harvnb|本間|類地|逢坂|2017|p=5}}</ref>。状態を持たない数学的な関数は、並列処理を実現するのに適している<ref name="名前なし-4"/>。関数型プログラミング言語の内で、全ての関数が参照透過性を持つようなものを純粋関数型プログラミング言語という<ref name="名前なし-4"/>。
=== 純粋関数とイミュータブルと並行計算 ===


== 歴史 ==
=== 入出力 ===
初の関数型プログラミング言語とされる「[[LISP]]」は、1950年代に[[マサチューセッツ工科大学]]の[[ジョン・マッカーシー]]によって開発された。数々の後発言語の手本にされた[[マルチパラダイムプログラミング言語|マルチパラダイム]]言語であるLISPは同時に、[[ラムダ計算]]をモデルにして再帰可能に拡張された関数など数々の関数型プログラミングのスタイルを備えていた。ラムダ計算は1930年代に[[アロンゾ・チャーチ]]によって発明された[[計算模型]]であり、1937年に[[チューリング完全]]である事が示されて[[チューリングマシン]]と等価な計算[[形式体系]]である事が証明されている。この経緯からラムダ計算は関数型プログラミングの基礎理論に位置付けられている。同じく1930年代にラムダ計算と並ぶ[[計算模型]]の[[コンビネータ論理]]を考案し、[[カリー化]]の語源にもなった[[ハスケル・カリー]]がいる。LISPは多くの派生言語を生んでいるが、1975年公開の「[[Scheme]]」は関数型プログラミングとしての特徴をより明確にした言語になっている。


関数型プログラミングでは、数学的な関数を組み合わせて計算を表現するが、それだけではファイルの読み書きのような外界とのやり取りを要する処理を直接的に表現できない<ref name="名前なし-5">{{harvnb|本間|類地|逢坂|2017|p=6}}</ref>。このような外界とのやり取りを '''I/O (入出力)''' と呼ぶ<ref name="名前なし-5"/>。数学的な計算をするだけ、つまり <code>1 + 1</code> のようなプログラム内で完結する処理ならば、入出力を記述できなくても問題ないが、現実的なプログラムにおいてはそうでない<ref name="名前なし-5"/>。
現代的な関数型プログラミング言語の祖としてはアイディアが1966年に発表された[[ISWIM]]が挙げられるが、1970年前後までは関数型プログラミング言語の歴史はLISPの発展が主である。1970年代にプロジェクトが開始された[[ロジック・フォー・コンピュータブル・ファンクションズ]](英語版)のための言語として[[ML (プログラミング言語)|ML]]が作られている。またLISPにおいて、変数のスコープに静的スコープを採用したSchemeが誕生したのが1975年である。


非純粋な関数型プログラミング言語においては、式を評価すると同時に I/O が発生する関数を用意することで入出力を実現する<ref name="名前なし-5"/>。たとえば、 [[F Sharp|F# 言語]]では、<code>printfn "Hi."</code> が評価されると、 <code>()</code> という値が戻ってくると同時に、画面に <code>Hi.</code> と表示される I/O が発生する<ref name="名前なし-5"/>。
1977年、FORTRANの設計と[[バッカス・ナウア記法]]の発明の業績でこの年の[[チューリング賞]]を受賞した[[ジョン・バッカス]]は、''Can Programming Be Liberated From the von Neumann Style?: A Functional Style and Its Algebra of Programs''と題した受賞記念講演で関数型プログラミングの重要性を訴えた。講演では[[FP (プログラミング言語)|FP]]という関数型プログラミング言語の紹介もした(サブタイトルの後半の「プログラムの代数」はこれを指す)が、これは[[APL]](特に、[[高階関数]]の意味がある記号(APLの用語ではオペレーター([[作用素]])という))の影響を受けている。


[[Haskell]] では、評価と同時に I/O が行われる関数は存在しない<ref name="名前なし-5"/>。たとえば、 <code>putStrLn "Hi."</code> という式が評価されると <code>IO ()</code> 型を持つ値が返されるが画面には何も表示されず、この値が Haskell の処理系によって解釈されて初めて画面に <code>Hi.</code> と表示される<ref name="名前なし-5"/>。 '''I/O アクション'''とは、ファイルの読み書きやディスプレイへの表示などのような I/O を表現する式のことである<ref name="名前なし-5"/><ref>{{harvnb|本間|類地|逢坂|2017|p=23}}</ref>。 <code>IO a</code> という型は、コンピュータへの指示を表す I/O アクションを表現している<ref name="名前なし-5"/><ref>{{harvnb|本間|類地|逢坂|2017|p=31}}</ref>。ここでの <code>IO</code> は[[モナド (プログラミング)|モナド]]と呼ばれるものの一つである<ref>{{harvnb|本間|類地|逢坂|2017|p=32}}</ref>。
バッカスのFPは広く使用されることはなかったが、この後関数型プログラミング言語の研究・開発は広まることとなった。1985年に[[Miranda]]が登場した。1987年に、遅延評価の純粋関数型プログラミング言語の標準の必要性が認識されHaskellの策定が始まった。1990年にHaskell 1.0仕様がリリースされた。同じく1990年にはMLの標準である[[Standard ML]]もリリースされている。Cleanは1987年に登場したが、発展の過程でHaskellの影響を受けている。1996年に、ML処理系のひとつであったCamlに[[オブジェクト指向]]を追加したOCamlが登場した。また日本ではSMLに独自の拡張を施した[[SML#]]が開発されている。


[[Clean]] では、一意型を用いて入出力を表す。
21世紀に入ると、[[Java仮想マシン]]や[[共通言語基盤]](CLI)をランタイムとする関数型プログラミング言語を実装しようという動きが現れ、[[Scala]]・[[Clojure]]・[[F Sharp|F#]]などが登場した。

=== 手法 ===

{{節スタブ|1=[[モナド (プログラミング)|モナド]]・[[永続データ構造]]|date=2021年3月}}

最初に解の集合となる候補を生成し、それらの要素に対して1つ(もしくは複数)の解にたどり着くまで関数の適用とフィルタリングを繰り返す手法は、関数型プログラミングでよく用いられるパターンである<ref name="名前なし-6">{{harvnb|Lipovača|2012|p=22}}</ref>。

Haskell では、関数合成の二項演算子を使って'''ポイントフリースタイル'''で関数を定義することができる<ref name="名前なし-6"/>。関数をポイントフリースタイルで定義すると、データより関数に目が行くようになり、どのようにデータが移り変わっていくかではなく、どんな関数を合成して何になっているかということへ意識が向くため、定義が読みやすく簡潔になることがある<ref name="名前なし-6"/>。関数が複雑になりすぎると、ポイントフリースタイルでは逆に可読性が悪くなることもある<ref name="名前なし-6"/>。

=== 言語 ===

関数型プログラミング言語とは、関数型プログラミングを推奨している[[プログラミング言語]]である<ref name="名前なし-1"/>。略して関数型言語ともいう<ref name="名前なし-1"/>。全ての関数が参照透過性を持つようなものを、特に{{仮リンク|純粋関数型プログラミング言語|en|purely functional programming language}}という<ref name="名前なし-4"/>。そうでないものを非純粋であるという<ref name="名前なし-5"/>。

関数型プログラミング言語の多くは、言語の設計において何らかの形で[[ラムダ計算]]が関わっている<ref name="名前なし-3"/>。ラムダ計算はコンピュータの計算をモデル化する体系の一つであり、記号の列を規則に基づいて変換していくことで計算が行われるものである<ref name="名前なし-3"/>。


== 代表的な関数型言語 ==
{| class="wikitable sortable"
{| class="wikitable sortable"
|+ 関数型プログラミング言語
!言語
!純粋さ
!型付け
|-
|-
! 名前
|{{lang|en|[[Clean]]}}||純粋||強い、静的
! 型付け
! 純粋性
! 評価戦略
! 理論的背景
|-
|-
| [[Clean]]
|{{lang|en|[[Clojure]]}}||非純粋||動的
| 静的型付け
| 純粋
| 遅延評価
|
|-
|-
| [[Elm (プログラミング言語)|Elm]]
|{{lang|en|[[Erlang]]}}||非純粋||動的
| 静的型付け
| 純粋
| 正格評価
|
|-
|-
| [[Erlang]]
|{{lang|en|[[F Sharp|F#]]}}||非純粋||強い、静的
| 動的型付け
| 非純粋
| 正格評価
|
|-
|-
| [[F Sharp|F#]]
|{{lang|en|[[Haskell]]}}||純粋||強い、静的
| 静的型付け
| 非純粋
| 正格評価
|
|-
|-
| [[Haskell]]<ref name="名前なし-2"/>
|{{lang|en|[[Idris]]}}||純粋||強い、静的
| 静的型付け<ref name="名前なし-2"/>
| 純粋<ref name="名前なし-2"/>
| 遅延評価<ref name="名前なし-2"/>
| 型付きラムダ計算<ref name="名前なし-3"/>
|-
|-
| [[Idris (プログラミング言語)|Idris]]
|{{lang|en|[[Lazy K]]}}||純粋||型なし
| 静的型付け
| 純粋
| 正格評価
| 型付きラムダ計算
|-
|-
| [[Lazy K]]
|{{lang|en|[[LISP]]}}||非純粋||動的
| 型なし
| 純粋
| 遅延評価
| コンビネータ論理
|-
|-
| [[LISP|LISP 1.5]]<br>[[Scheme]]<br>[[Common Lisp]]<br>[[Clojure]]
|{{lang|en|[[Miranda]]}}||純粋||強い、静的
| 動的型付け
| 非純粋
| 正格評価
| 型無しラムダ計算<ref name="名前なし-3"/>
|-
|-
| [[LISP]]の各種方言<ref name="名前なし-3"/>
|{{lang|en|[[ML (プログラミング言語)|ML]]}}||非純粋||強い、静的
| 方言による
| 方言による
| 方言による
|
|-
|-
| [[Miranda]]
|{{lang|en|[[SML#]]}}||非純粋||強い、静的
| 静的型付け
| 純粋
| 遅延評価
|
|-
|-
| [[ML (プログラミング言語)|ML]]<br>[[Standard ML]]<br>[[OCaml]]
|{{lang|en|[[Standard ML]]}}||非純粋||強い、静的
| 静的型付け
| 非純粋
| 正格評価
|-
|-
| [[Scala]]
|{{lang|en|[[OCaml]]}}||非純粋||強い、静的
| 静的型付け
| 非純粋
| 正格評価
|
|-
|-
| [[Unlambda]]
|{{lang|en|[[Scala]]}}||非純粋||強い、静的
| 型なし
| 非純粋
| 正格評価
| コンビネータ論理
|-
|-
|[[Lean (証明アシスタント)|Lean]]
|{{lang|en|[[Scheme]]}}||非純粋||動的
|静的型付け
|-
|純粋
|{{lang|en|[[Unlambda]]}}||非純粋||型なし
|正格評価
|型付きラムダ計算
|}
|}


=== 手続き型プログラミングとの比較 ===
純粋関数型言語では、[[参照透過性]]が常に保たれるという意味において、全ての[[式 (プログラミング)|式]]や関数の「評価時」に[[副作用 (プログラム)|副作用]]を生まない。純粋関数型言語である{{lang|en|[[Haskell]]}}や{{lang|en|[[Clean]]}}は非[[正格]]な評価を基本としており、引数はデフォルトで[[遅延評価]]される。一方、{{lang|en|[[Idris]]}}は純粋だが正格評価を採用している。入出力などを[[参照透過性]]を保ったまま実現するために、たとえば {{lang|en|Haskell}} では[[モナド|モナド]]、{{lang|en|Clean}} では{{仮リンク|一意型|en|Uniqueness type}}という特殊な型を通して一貫性のある表現を提供する。


[[C|C 言語]]や [[Java]] 、 [[JavaScript]] 、 [[Python]] 、 [[Ruby]] などの2017年現在に使われている言語の多くは、手続き型の文法を持っている<ref name="名前なし-7">{{harvnb|本間|類地|逢坂|2017|p=22}}</ref>。そのような言語では、文法として式 (expression) と文 (statement) を持つ<ref name="名前なし-7"/>。ここでの式は、計算を実行して結果を得るような処理を記述するための文法要素であり、加減乗除や関数呼び出しなどから構成されている<ref name="名前なし-7"/>。ここでの文は、何らかの動作を行うようにコンピュータへ指示するための文法要素であり、条件分岐の [[if文|if 文]]やループの [[for文|for 文]]と [[while文|while 文]]などから構成されている<ref name="名前なし-7"/>。手続き型の文法では、式で必要な計算を進め、その結果を元にして文でコンピュータ命令を行うという形で、プログラムを記述する<ref name="名前なし-7"/>。このように、[[手続き型言語]]で重要なのは文である<ref name="名前なし-7"/>。
非純粋関数型言語では、参照透過性を壊す、副作用があるような式や関数も存在する。{{lang|en|LISP}}などでデータ構造の破壊的変更などの副作用を多用したプログラミングを行うと、それはもはや手続き型プログラミングである。多くの場合、非純粋関数型言語の[[評価戦略]]は正格評価(先行評価)であるが、遅延評価する部分を明示することで、無限リストなどを扱えるものもある。


それに対して、[[関数型言語]]で重要なのは式である<ref name="名前なし-7"/>。関数型言語のプログラムはたくさんの式で構成され、プログラムそのものも一つの式である<ref name="名前なし-7"/>。たとえば、 Haskell では、プログラムの処理の記述において文は使われず、外部の定義を取り込む import 宣言も処理の一部として扱えない<ref name="名前なし-7"/>。関数型言語におけるプログラムの実行とは、プログラムを表す式の計算を進めて、その結果として値 (value) を得ることである<ref name="名前なし-7"/>。式を計算することを、'''評価する''' (evaluate) という<ref name="名前なし-7"/>。
従来の手続き型と分類されるプログラミング言語においても、関数型プログラミングを行ないやすくなる機能を備えているものもある。[[C言語]]および[[C++]]は[[関数へのポインタ]]をサポートし、関数をオブジェクトのように扱うことができるが、関数ポインタによって[[第一級関数]]をサポートしているとみなされてはいない。なお、C# 3.0、[[C++11]]、Java 8など、後発の規格においてラムダ式([[無名関数]])をサポートするようになった言語もある。


手続き型言語ではコンピュータへの指示を文として上から順に並べて書くのに対して、関数型言語では数多く定義した細かい式を組み合わせてプログラムを作る<ref name="名前なし-7"/>。手続き型言語では文が重要であり、関数型言語では式が重要である<ref name="名前なし-8">{{harvnb|本間|類地|逢坂|2017|pp=22–23}}</ref>。
{{lang|en|[[JavaScript]]}}や{{lang|en|[[Java]]}}など{{いつ範囲|date=2018年10月|近年}}の[[高水準言語]]には、関数型言語の機能や特徴を取り入れているものがあるが、変数の値やオブジェクトの状態を書き換えるプログラミングスタイルを通常とするため、関数型言語とは分類されない。一方{{lang|en|[[LISP]]}}は、その多くが副作用のある式や関数が多数あり、手続き型スタイルでのプログラミングがされることも多いが、理論的なモデル(「[[純LISP|純{{lang|en|LISP}}]]」)の存在や副作用を使わないプログラミングが基本であること、ないし主には歴史的理由から、関数型言語だとされることが多い。なお、{{lang|fr|Pascal}}では「手続き」と呼ばれるような値を返さない[[サブルーチン]]を、C言語では<!--<code>void</code>型の値を返す関数と捉える--><!--void型の値というものは存在せず、存在しないものについて、それを返す関数と「捉える」ことは常人には困難-->「関数」と呼んでいるが、これは単にルーチンについて、細分類して別の呼称を付けているか、細分類せず総称しているか、という分類と呼称の違いに過ぎず、「{{lang|fr|Pascal}}は手続き型言語で、C言語は関数型言語」<ref>[[共立出版]]『{{lang|en|ANSI C/C++}}辞典』ISBN 4-320-02797-3 など</ref>という一部の書籍に見られる記述は明確に誤りである。また、{{lang|en|OCaml}}や{{lang|en|Haskell}}などでは、「自明な値(例えば<code>()</code>)を返す」と、値を返さない(<code>Void</code>など)は違うものであり、後者は停止しないか例外を出す(そのため結果がない)ようなプログラムを表す。


式と文の違いとして、型が付いているかどうかというのがある<ref name="名前なし-8"/>。式は型を持つが、文は型を持たない<ref name="名前なし-8"/>。プログラム全てが式から構成されていて、強い静的型付けがされているのならば、プログラムの全体が細部まで型付けされることになる<ref name="名前なし-8"/>。このように細部まで型付けされているようなプログラムは堅固なものになる<ref name="名前なし-8"/>。
なお、「関数型言語である」と「関数型プログラミングをする」は同値ではなく、関数型には分類されない言語で関数型プログラミングをすること{{efn|関数型プログラミングのエッセンスとして、[[MISRA C]]のように[[C言語]]でも副作用を極力用いないプログラミングを推奨しているコーディング標準もある。}}や、関数型プログラミングを基本とする言語の上で他のパラダイムを実現する例もある<ref name="Novatchev">{{cite web|url=http://arxiv.org/abs/cs/0509027|author=Oleg Kiselyov, Ralf Lämmel|title=Haskell's overlooked object system|accessdate=Sep 10, 2005}}</ref>。[[データフロープログラミング]]言語も関数型言語と共通した特徴を部分的に持つ。<!--<ref>「関数型言語」に関するFAQ形式の一般的説明 https://qiita.com/esumii/items/ec589d138e72e22ea97e</ref>[[Wikipedia:検証可能性#通常は信頼できないとされる情報源]]-->


== 歴史 ==
'''その他の関数的性質を持つ言語'''
=== 1930年代 ===
関数型言語の開発において、[[アロンゾ・チャーチ]]が1932年<ref group="注釈">{{harv|Church|1932}}</ref>と1941年<ref group="注釈">{{harv|Church|1941}}</ref>に発表した[[ラムダ計算]]の研究ほど基本的で重要な影響を与えたものはない<ref name="名前なし-9">{{harvnb|Hudak|1989|p=363}}</ref>。ラムダ計算は、それが考え出された当時は[[プログラム (コンピュータ)|プログラム]]を実行するような[[コンピュータ]]が存在しなかったために[[プログラミング言語]]として見なされなかったにもかかわらず、今では最初の関数型言語とされている<ref name="名前なし-9"/>。1989年現在の関数型言語は、そのほとんどがラムダ計算に装飾を加えたものとして見なせる<ref name="名前なし-9"/>。


=== 1960年代 ===
*{{lang|en|[[APL]]}}
1960年に[[ジョン・マッカーシー]]等が発表した [[LISP]] は関数型言語の歴史において重要である<ref>{{harvnb|Hudak|1989|p=367}}</ref>。ラムダ計算は LISP の基礎であると言われるが、マッカーシー自身が1978年<ref group="注釈">{{harv|McCarthy|1978}}</ref>に説明したところによると、[[匿名関数]]を表現したいというのが最初にあって、その手段としてマッカーシーはチャーチのラムダ計算を選択したに過ぎない<ref>{{harvnb|Hudak|1989|pp=367–368}}</ref>。
*{{lang|en|[[XSL Transformations|XSLT]]}}


歴史的に言えば、 [[LISP]] に続いて関数型プログラミングパラダイムへ刺激を与えたのは、1960年代半ばの{{仮リンク|ピーター・ランディン|en|Peter Landin}}の成果である<ref name="名前なし-10">{{harvnb|Hudak|1989|p=371}}</ref>。ランディンの成果は[[ハスケル・カリー]]と[[アロンゾ・チャーチ]]に大きな影響を受けていた<ref name="名前なし-10"/>。ランディンの初期の論文は、ラムダ計算と、機械および高級言語 ([[ALGOL 60]]) との関係について議論している<ref name="名前なし-10"/>。ランディンは、1964年<ref group="注釈">{{harv|Landin|1964}}</ref>に、 [[SECDマシン|SECD マシン]]と呼ばれる抽象的な機械を使って機械的に式を評価する方法を論じ、1965年<ref group="注釈">{{harv|Landin|1965}}</ref>に、ラムダ計算で ALGOL 60 の非自明なサブセットを形式化した<ref name="名前なし-10"/>。1966年<ref group="注釈">{{harv|Landin|1966}}</ref>にランディンが発表した [[ISWIM]](If You See What I Mean の略)という言語(群)は、間違いなく、これらの研究の成果であり、[[構文]]や[[プログラム意味論|意味論]]において多くの重要なアイデアを含んでいた<ref name="名前なし-10"/>。 ISWIM は、ランディン本人によれば、「 LISP を、その名前にも表れた[[リスト (抽象データ型)|リスト]]へのこだわり、手作業のメモリ割り当て、ハードウェアに依存した教育方法、[[S式|重い括弧]]、伝統への妥協、から解放しようとする試みとして見ることができる」<ref name="名前なし-10"/>。関数型言語の歴史において ISWIM は次のような貢献を果たした<ref name="名前なし-11">{{harvnb|Hudak|1989|pp=371–372}}</ref>。
== 関数型プログラミングの例 ==
関数型プログラミングは「計算とは何か」という数学の理論を基礎にしており、関数型プログラミングがもつ[[計算モデル]]は'''関数モデル'''である<ref>計算モデル2 関数モデル. (中略) 関数モデルに基づくプログラミング言語. 関数型言語. Lisp [http://nous.web.nitech.ac.jp/individual/inuzuka/lecture/PLT/PLT07/ 犬塚信博 (2007)「プログラミング言語論 第1回 イントロダクション」名古屋工業大学]</ref>。たとえば、1 から 10 までの整数を足し合わせるプログラムを考える{{efn|本来は[[等差数列]]の和の公式を用いて定数時間で問題を解く方法が最適解だが、ここではプログラミングスタイルの比較のため数値計算的手法を用いる。}}。[[命令型プログラミング]]では以下のように[[ループ (プログラミング)|ループ]]文を使って変数に数値を足していく(計算機の状態を書き換える)命令を繰り返し実行するという形を取る。


* 構文についての革新<ref name="名前なし-10"/>
* [[Pascal]]による例:
** 演算子を前置記法で記述するのをやめて中置記法を導入した<ref name="名前なし-10"/>。
<syntaxhighlight lang="pascal">
** let 節と where 節を導入して、さらに、関数を順序なく同時に定義でき、相互再帰も可能なようにした<ref name="名前なし-10"/>。
program test;
** 宣言などを記述する構文に、インデントに基づいたオフサイドルールを使用した<ref name="名前なし-10"/>。
var total, i : Integer;
* 意味論についての革新<ref name="名前なし-11"/>
begin
** 非常に小さいが表現力があるコア言語を使って、構文的に豊かな言語を定義するという戦略を導入した<ref name="名前なし-10"/>。
total := 0;
** 等式推論 (equational reasoning) を重視した<ref name="名前なし-10"/>。
for i := 1 to 10 do
** 関数によるプログラムを実行するための単純な抽象機械としての SECD マシンを導入した<ref name="名前なし-11"/>。
total := total + i;
WriteLn(total)
end.
</syntaxhighlight>


ランディンは「それをどうやって行うか」ではなく「それの望ましい結果とは何か」を表現することに重点を置いており、そして、 ISWIM の宣言的なプログラミング・スタイルは命令的なプログラミング・スタイルよりも優れているというランディンの主張は、今日まで関数型プログラミングの賛同者たちから支持されてきた<ref name="名前なし-12">{{harvnb|Hudak|1989|p=372}}</ref>。その一方で、関数型言語への関心が高まるまでは、さらに10年を要した<ref name="名前なし-12"/>。その理由の一つは、 ISWIM ライクな言語の実用的な実装がなかったことであり、実のところ、この状況は1980年代になるまで変わらなかった<ref name="名前なし-12"/>。
一方、関数型プログラミングでは、繰り返しには一時変数およびループを使わず、[[サブルーチン|関数]]の[[再帰呼び出し]]を使う。


[[ケネス・アイバーソン]]が1962年<ref group="注釈">{{harv|Iverson|1962}}</ref>に発表した [[APL]] は、純粋な関数型プログラミング言語ではないが、その関数型的な部分を取り出したサブセットがラムダ式に頼らずに関数型プログラミングを実現する方法の一例であるという点で、関数型プログラミング言語の歴史を考察する際に言及する価値はある<ref name="名前なし-12"/>。実際に、アイバーソンが APL を設計した動機は、配列のための代数的なプログラミング言語を開発したいというものであり、アイバーソンのオリジナル版は基本的に関数型的な記法を用いていた<ref name="名前なし-12"/>。その後の APL では、いくつかの命令型的な機能が追加されている<ref name="名前なし-12"/>。
* [[F Sharp|F#]]による例:
<syntaxhighlight lang="fsharp">
printfn "%d" (let rec sum x = if x > 0 then x + sum (x - 1) else 0
sum 10)
</syntaxhighlight>
<!--
<syntaxhighlight lang="haskell">
let
sum x = if x == 0 then 0
else x + sum (x - 1)
in
sum 10
</syntaxhighlight>
-->

ただし再帰呼び出しは[[スタックオーバーフロー]]の危険性やオーバーヘッドを伴うため、注意深く使用しなければならない<ref>[https://msdn.microsoft.com/ja-jp/library/dd233229(v=vs.120).aspx 関数 (F#) | MSDN]</ref>。通例、関数型言語では、[[末尾再帰]]呼び出し (tail-recursive call) の形で書かれた関数をループに展開する[[末尾再帰#末尾呼出し最適化|末尾呼出し最適化]]により、スタックオーバーフローの危険性および再帰のオーバーヘッドを解消できる。[[Scheme]]など、関数型言語の中には末尾再帰呼び出しの最適化を仕様で保証するものもある。再帰関数を末尾再帰に書き換えることが難しいケースも有り、そのような場合は一般的なループが採用される。

また、関数型言語は文 (statement) よりも式 (expression) を中心とした言語仕様となっていることも特徴である。前述の例において、再帰関数<code>sum</code>を[[束縛 (情報工学)|束縛]]する<code>let</code>は式である。また、条件分岐の<code>if-then-else</code>も式である。文よりも式で書けることが多いほうが都合がよい。

関数型言語は関数型プログラミングをサポートする言語ではあるが、手続き型プログラミングを行なうことも可能である。例えばF#では以下のようなPascal風の書き方もできる。

<syntaxhighlight lang="fsharp">
let mutable total = 0
for i = 1 to 10 do
total <- total + i
printfn "%d" total
</syntaxhighlight>

ただし[[Haskell]]のようにループ構文をサポートせず、従来の手続き型プログラミングが難しいケースもある。

逆に手続き型言語を使って関数型プログラミングを行なうことも可能であるが、末尾再帰呼び出しの最適化がサポートされるかどうかはコンパイラ次第である。


== 脚注 ==
== 脚注 ==

{{脚注ヘルプ}}
{{脚注ヘルプ}}

=== 注釈 ===
=== 注釈 ===

{{Notelist}}
{{Notelist}}

=== 出典 ===
=== 出典 ===

{{Reflist}}
{{Reflist}}

== 参考文献 ==

* {{Cite Q|Q55890017|last=Church|first=Alonzo}}
* {{Cite Q|Q105884272|last=Church|first=Alonzo}}
* {{Cite Q|Q55871443|last=Hudak|first=Paul}}
* {{Cite Q|Q105954505|last=Iverson|first=Kenneth}}
* {{Cite Q|Q56048080|last=McCarthy|first=John}}
* {{Cite Q|Q30040385|last=Landin|first=Peter}}
* {{Cite Q|Q105941120|last=Landin|first=Peter}}
* {{Cite Q|Q54002422|last=Landin|first=Peter}}
* {{Cite Q|Q105845956|edition=1st (1st printing)|last=Lipovača|first=Miran}}
* {{Cite Q|Q105833610|edition=1st (1st printing)|last=本間|first=雅洋|last2=類地|first2=孝介|last3=逢坂|first3=時響}}


== 外部リンク ==
== 外部リンク ==

* [http://www.sampou.org/haskell/article/whyfp.html なぜ関数プログラミングは重要か]
* [http://www.sampou.org/haskell/article/whyfp.html なぜ関数プログラミングは重要か]
* [http://www.topxml.com/xsl/articles/fp/ {{lang|en|The Functional Programming Language XSLT - A proof through examples}}]
* [https://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html lang|en|The Functional Programming Language XSLT - A proof through examples]([http://alamos.math.arizona.edu/courses/rychlik/CourseDir/589/Assignments/a3/fp.pdf PDF])


== 関連項目 ==

* [[カリー化]]


{{Normdaten}}
{{プログラミング言語の関連項目}}
{{プログラミング言語の関連項目}}


{{Normdaten}}
{{DEFAULTSORT:かんすうかたけんこ}}

[[Category:関数型言語|*]]
{{DEFAULTSORT:かんすうかたふろくらみんく}}
[[Category:関数型プログラミング|*]]
[[Category:プログラミングパラダイム]]
[[Category:プログラミングパラダイム]]

2024年11月3日 (日) 14:27時点における最新版

関数型プログラミング(かんすうがたプログラミング、: functional programming)とは、数学的な意味での関数を主に使うプログラミングのスタイルである[1]。 functional programming は、関数プログラミング(かんすうプログラミング)などと訳されることもある[2]

関数型プログラミング言語: functional programming language)とは、関数型プログラミングを推奨しているプログラミング言語である[1]。略して関数型言語: functional language)ともいう[1]

概要

[編集]

関数型プログラミングは、関数を主軸にしたプログラミングを行うスタイルである[1]。ここでの関数は、数学的なものを指し、引数の値が定まれば結果も定まるという参照透過性を持つものである[1]

参照透過性とは、数学的な関数と同じように同じ値を返す式を与えたら必ず同じ値を返すような性質である[1]。次の square 関数は、 2 となるような式を与えれば必ず 4 を返し、 3 となるような式を与えれば必ず 9 を返し、いかなる状況でも別の値を返すということはなく、これが参照透過性を持つ関数の一例となる[1]

def square(n):
  return n ** 2

次の countup 関数は、同じ 1 を渡しても、それまでに countup 関数がどのような引数で呼ばれていたかによって、返り値が 1, 2, 3, ... と変化するため、引数の値だけで結果の値が定まらないような参照透過性のない関数であり、数学的な関数とはいえない[1]

counter = 0
def countup(n):
  global counter
  counter += n
  return counter

関数型プログラミングは、参照透過性を持つような数学的な関数を使って組み立てたが主役となる[1]。別の箇所に定義されている処理を利用することを、手続き型プログラミング言語では「関数を実行する」や「関数を呼び出す」などと表現するが、関数型プログラミング言語では「式を評価する」という表現も良く使われる[3]

参照透過性

[編集]

参照透過性とは、同じ値を与えたら返り値も必ず同じになるような性質である[1]。参照透過性を持つことは、その関数が状態を持たないことを保証する[4]。状態を持たない数学的な関数は、並列処理を実現するのに適している[4]。関数型プログラミング言語の内で、全ての関数が参照透過性を持つようなものを純粋関数型プログラミング言語という[4]

入出力

[編集]

関数型プログラミングでは、数学的な関数を組み合わせて計算を表現するが、それだけではファイルの読み書きのような外界とのやり取りを要する処理を直接的に表現できない[5]。このような外界とのやり取りを I/O (入出力) と呼ぶ[5]。数学的な計算をするだけ、つまり 1 + 1 のようなプログラム内で完結する処理ならば、入出力を記述できなくても問題ないが、現実的なプログラムにおいてはそうでない[5]

非純粋な関数型プログラミング言語においては、式を評価すると同時に I/O が発生する関数を用意することで入出力を実現する[5]。たとえば、 F# 言語では、printfn "Hi." が評価されると、 () という値が戻ってくると同時に、画面に Hi. と表示される I/O が発生する[5]

Haskell では、評価と同時に I/O が行われる関数は存在しない[5]。たとえば、 putStrLn "Hi." という式が評価されると IO () 型を持つ値が返されるが画面には何も表示されず、この値が Haskell の処理系によって解釈されて初めて画面に Hi. と表示される[5]I/O アクションとは、ファイルの読み書きやディスプレイへの表示などのような I/O を表現する式のことである[5][6]IO a という型は、コンピュータへの指示を表す I/O アクションを表現している[5][7]。ここでの IOモナドと呼ばれるものの一つである[8]

Clean では、一意型を用いて入出力を表す。

手法

[編集]

最初に解の集合となる候補を生成し、それらの要素に対して1つ(もしくは複数)の解にたどり着くまで関数の適用とフィルタリングを繰り返す手法は、関数型プログラミングでよく用いられるパターンである[9]

Haskell では、関数合成の二項演算子を使ってポイントフリースタイルで関数を定義することができる[9]。関数をポイントフリースタイルで定義すると、データより関数に目が行くようになり、どのようにデータが移り変わっていくかではなく、どんな関数を合成して何になっているかということへ意識が向くため、定義が読みやすく簡潔になることがある[9]。関数が複雑になりすぎると、ポイントフリースタイルでは逆に可読性が悪くなることもある[9]

言語

[編集]

関数型プログラミング言語とは、関数型プログラミングを推奨しているプログラミング言語である[1]。略して関数型言語ともいう[1]。全ての関数が参照透過性を持つようなものを、特に純粋関数型プログラミング言語英語版という[4]。そうでないものを非純粋であるという[5]

関数型プログラミング言語の多くは、言語の設計において何らかの形でラムダ計算が関わっている[3]。ラムダ計算はコンピュータの計算をモデル化する体系の一つであり、記号の列を規則に基づいて変換していくことで計算が行われるものである[3]

関数型プログラミング言語
名前 型付け 純粋性 評価戦略 理論的背景
Clean 静的型付け 純粋 遅延評価
Elm 静的型付け 純粋 正格評価
Erlang 動的型付け 非純粋 正格評価
F# 静的型付け 非純粋 正格評価
Haskell[2] 静的型付け[2] 純粋[2] 遅延評価[2] 型付きラムダ計算[3]
Idris 静的型付け 純粋 正格評価 型付きラムダ計算
Lazy K 型なし 純粋 遅延評価 コンビネータ論理
LISP 1.5
Scheme
Common Lisp
Clojure
動的型付け 非純粋 正格評価 型無しラムダ計算[3]
LISPの各種方言[3] 方言による 方言による 方言による
Miranda 静的型付け 純粋 遅延評価
ML
Standard ML
OCaml
静的型付け 非純粋 正格評価
Scala 静的型付け 非純粋 正格評価
Unlambda 型なし 非純粋 正格評価 コンビネータ論理
Lean 静的型付け 純粋 正格評価 型付きラムダ計算

手続き型プログラミングとの比較

[編集]

C 言語JavaJavaScriptPythonRuby などの2017年現在に使われている言語の多くは、手続き型の文法を持っている[10]。そのような言語では、文法として式 (expression) と文 (statement) を持つ[10]。ここでの式は、計算を実行して結果を得るような処理を記述するための文法要素であり、加減乗除や関数呼び出しなどから構成されている[10]。ここでの文は、何らかの動作を行うようにコンピュータへ指示するための文法要素であり、条件分岐の if 文やループの for 文while 文などから構成されている[10]。手続き型の文法では、式で必要な計算を進め、その結果を元にして文でコンピュータ命令を行うという形で、プログラムを記述する[10]。このように、手続き型言語で重要なのは文である[10]

それに対して、関数型言語で重要なのは式である[10]。関数型言語のプログラムはたくさんの式で構成され、プログラムそのものも一つの式である[10]。たとえば、 Haskell では、プログラムの処理の記述において文は使われず、外部の定義を取り込む import 宣言も処理の一部として扱えない[10]。関数型言語におけるプログラムの実行とは、プログラムを表す式の計算を進めて、その結果として値 (value) を得ることである[10]。式を計算することを、評価する (evaluate) という[10]

手続き型言語ではコンピュータへの指示を文として上から順に並べて書くのに対して、関数型言語では数多く定義した細かい式を組み合わせてプログラムを作る[10]。手続き型言語では文が重要であり、関数型言語では式が重要である[11]

式と文の違いとして、型が付いているかどうかというのがある[11]。式は型を持つが、文は型を持たない[11]。プログラム全てが式から構成されていて、強い静的型付けがされているのならば、プログラムの全体が細部まで型付けされることになる[11]。このように細部まで型付けされているようなプログラムは堅固なものになる[11]

歴史

[編集]

1930年代

[編集]

関数型言語の開発において、アロンゾ・チャーチが1932年[注釈 1]と1941年[注釈 2]に発表したラムダ計算の研究ほど基本的で重要な影響を与えたものはない[12]。ラムダ計算は、それが考え出された当時はプログラムを実行するようなコンピュータが存在しなかったためにプログラミング言語として見なされなかったにもかかわらず、今では最初の関数型言語とされている[12]。1989年現在の関数型言語は、そのほとんどがラムダ計算に装飾を加えたものとして見なせる[12]

1960年代

[編集]

1960年にジョン・マッカーシー等が発表した LISP は関数型言語の歴史において重要である[13]。ラムダ計算は LISP の基礎であると言われるが、マッカーシー自身が1978年[注釈 3]に説明したところによると、匿名関数を表現したいというのが最初にあって、その手段としてマッカーシーはチャーチのラムダ計算を選択したに過ぎない[14]

歴史的に言えば、 LISP に続いて関数型プログラミングパラダイムへ刺激を与えたのは、1960年代半ばのピーター・ランディン英語版の成果である[15]。ランディンの成果はハスケル・カリーアロンゾ・チャーチに大きな影響を受けていた[15]。ランディンの初期の論文は、ラムダ計算と、機械および高級言語 (ALGOL 60) との関係について議論している[15]。ランディンは、1964年[注釈 4]に、 SECD マシンと呼ばれる抽象的な機械を使って機械的に式を評価する方法を論じ、1965年[注釈 5]に、ラムダ計算で ALGOL 60 の非自明なサブセットを形式化した[15]。1966年[注釈 6]にランディンが発表した ISWIM(If You See What I Mean の略)という言語(群)は、間違いなく、これらの研究の成果であり、構文意味論において多くの重要なアイデアを含んでいた[15]。 ISWIM は、ランディン本人によれば、「 LISP を、その名前にも表れたリストへのこだわり、手作業のメモリ割り当て、ハードウェアに依存した教育方法、重い括弧、伝統への妥協、から解放しようとする試みとして見ることができる」[15]。関数型言語の歴史において ISWIM は次のような貢献を果たした[16]

  • 構文についての革新[15]
    • 演算子を前置記法で記述するのをやめて中置記法を導入した[15]
    • let 節と where 節を導入して、さらに、関数を順序なく同時に定義でき、相互再帰も可能なようにした[15]
    • 宣言などを記述する構文に、インデントに基づいたオフサイドルールを使用した[15]
  • 意味論についての革新[16]
    • 非常に小さいが表現力があるコア言語を使って、構文的に豊かな言語を定義するという戦略を導入した[15]
    • 等式推論 (equational reasoning) を重視した[15]
    • 関数によるプログラムを実行するための単純な抽象機械としての SECD マシンを導入した[16]

ランディンは「それをどうやって行うか」ではなく「それの望ましい結果とは何か」を表現することに重点を置いており、そして、 ISWIM の宣言的なプログラミング・スタイルは命令的なプログラミング・スタイルよりも優れているというランディンの主張は、今日まで関数型プログラミングの賛同者たちから支持されてきた[17]。その一方で、関数型言語への関心が高まるまでは、さらに10年を要した[17]。その理由の一つは、 ISWIM ライクな言語の実用的な実装がなかったことであり、実のところ、この状況は1980年代になるまで変わらなかった[17]

ケネス・アイバーソンが1962年[注釈 7]に発表した APL は、純粋な関数型プログラミング言語ではないが、その関数型的な部分を取り出したサブセットがラムダ式に頼らずに関数型プログラミングを実現する方法の一例であるという点で、関数型プログラミング言語の歴史を考察する際に言及する価値はある[17]。実際に、アイバーソンが APL を設計した動機は、配列のための代数的なプログラミング言語を開発したいというものであり、アイバーソンのオリジナル版は基本的に関数型的な記法を用いていた[17]。その後の APL では、いくつかの命令型的な機能が追加されている[17]

脚注

[編集]

注釈

[編集]

出典

[編集]

参考文献

[編集]
  • Church, Alonzo (1932年4月), “A Set of Postulates for the Foundation of Logic” (英語), Annals of Mathematics 33 (2): 346, doi:10.2307/1968337, ISSN 0003-486X, JSTOR 1968337, https://jstor.org/stable/1968337 , Wikidata Q55890017
  • Church, Alonzo (1941年) (英語), The Calculi of Lambda Conversion, プリンストン大学出版局 , Wikidata Q105884272
  • Hudak, Paul (1989年9月1日), “Conception, evolution, and application of functional programming languages” (英語), ACM Computing Surveys 21 (3): 359–411, doi:10.1145/72551.72554, ISSN 0360-0300 , Wikidata Q55871443
  • Iverson, Kenneth (1962年12月1日) (英語), A Programming Language, ジョン・ワイリー・アンド・サンズ, ISBN 978-0-471-43014-8, OL 26792153M , Wikidata Q105954505
  • McCarthy, John (1978年), History of LISP, doi:10.1145/800025.808387 , Wikidata Q56048080
  • Landin, Peter (1964年1月1日), “The Mechanical Evaluation of Expressions” (英語), The Computer Journal 6 (4): 308-320, doi:10.1093/COMJNL/6.4.308, ISSN 0010-4620 , Wikidata Q30040385
  • Landin, Peter (1965年), “Correspondence between ALGOL 60 and Church's Lambda-notation” (英語), Communications of the ACM 8, ISSN 0001-0782 , Wikidata Q105941120
  • Landin, Peter (1966年3月1日), “The next 700 programming languages” (英語), Communications of the ACM 9 (3): 157-166, doi:10.1145/365230.365257, ISSN 0001-0782 , Wikidata Q54002422
  • Lipovača, Miran 田中英行, 村主崇行訳 (2012年5月25日), すごいHaskellたのしく学ぼう! (1st (1st printing) ed.), オーム社, ISBN 978-4-274-06885-0 , Wikidata Q105845956
  • 本間雅洋; 類地孝介; 逢坂時響『Haskell入門 関数型プログラミング言語の基礎と実践』(1st (1st printing))技術評論社、2017年10月10日。ISBN 978-4-7741-9237-6 , Wikidata Q105833610

外部リンク

[編集]

関連項目

[編集]