コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

「関数型プログラミング」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
編集の要約なし
 
(26人の利用者による、間の196版が非表示)
1行目: 1行目:
{{プログラミング・パラダイム}}
{{独自研究|date=2014年4月}}
'''関数型プログラミング'''(かんすうがたプログラミング、{{lang-en-short|functional programming}})とは、[[関数 (数学)|数学的な意味での関数]]を主に使うプログラミングのスタイルである<ref name="名前なし-1">{{harvnb|本間|類地|逢坂|2017|p=3}}</ref>。 functional programming は、'''関数プログラミング'''(かんすうプログラミング)などと訳されることもある<ref name="名前なし-2">{{harvnb|本間|類地|逢坂|2017|p=2}}</ref>。
{{プログラミング言語|index=かんすうかたけんこ}}
[[ファイル:Orange_lambda.svg|代替文=|境界|右|フレームなし|209x209px]]


{{Visible anchor|'''関数型プログラミング言語'''|関数型言語|FP}}({{lang-en-short|functional programming language}})とは、関数型プログラミングを推奨している[[プログラミング言語]]である<ref name="名前なし-1"/>。略して'''関数型言語'''({{lang-en-short|functional language}})ともいう<ref name="名前なし-1"/>。
<!-- 本節はHaskellやLISPに偏重しすぎ -->
'''関数型言語'''({{lang-en-short|''functional language''}})は、'''関数型プログラミング'''のスタイルまたは[[プログラミングパラダイム|パラダイム]]を扱う[[プログラミング言語]]の総称である。関数型プログラミングは関数の[[写像|適用]]と[[関数の合成|合成]]から組み立てられる[[宣言型プログラミング]]の一種であり、関数は[[引数]]の適用から先行式の[[評価戦略|評価]]を後続式の適用に繋げて終端評価に到る[[式 (プログラミング)|式]]の[[ツリー構造|ツリー]]として定義される。関数は引数ないし返値として渡せる[[第一級関数]]として扱われる。


== 概要 ==
関数型プログラミングは[[数理論理学]]と代数系をルーツにし、[[ラムダ計算]]と[[コンビネータ論理]]を幹にして構築され、[[LISP]]言語が実装面の先駆になっている。応用面では[[圏論]]がパラダイムモデルにされている。関数の数学的な純粋性を指向したものは純粋関数型言語と個別に定義されている。[[命令型プログラミング]]言語では単に有用な構文スタイルとして扱われている事が多い。[[高階関数]]、[[第一級関数]]、{{仮リンク|関数合成|en|Function composition (computer science)|label=}}、{{仮リンク|部分適用|en|Partial application|label=}}、[[無名関数]]、[[クロージャ]]、[[継続]]、[[ボトム型|部分関数]]、{{仮リンク|ポイントフリー|en|Tacit programming|label=}}、[[パイプライン処理|パイプライン]]、[[イテレータ]]、[[ジェネレータ (プログラミング)|ジェネレータ]]、[[代数的データ型]]、[[型推論]]、[[パターンマッチング]]、[[ガード (プログラミング)|ガード]]、{{仮リンク|パラメトリック多相|en|Parametric polymorphism|label=}}、{{仮リンク|アドホック多相|en|Ad hoc polymorphism|label=}}、[[末尾再帰]]、[[束縛変数]]、[[イミュータブル]]、{{仮リンク|純粋関数|en|Pure function|label=}}などが{{誰範囲|date=2020年5月|関数型プログラミングのスタイル要素として挙げられる}}。


関数型プログラミングは、[[関数 (数学)|関数]]を主軸にしたプログラミングを行うスタイルである<ref name="名前なし-1"/>。ここでの関数は、数学的なものを指し、引数の値が定まれば結果も定まるという[[参照透過性]]を持つものである<ref name="名前なし-1"/>。
== 特徴 ==


'''参照透過性'''とは、数学的な関数と同じように同じ値を返す式を与えたら必ず同じ値を返すような性質である<ref name="名前なし-1"/>。次の <code>square</code> 関数は、 <code>2</code> となるような式を与えれば必ず <code>4</code> を返し、 <code>3</code> となるような式を与えれば必ず <code>9</code> を返し、いかなる状況でも別の値を返すということはなく、これが参照透過性を持つ関数の一例となる<ref name="名前なし-1"/>。
ここでは関数型プログラミング本来の構文スタイルを元にして説明する。式を基本文にする関数型に対して、[[文 (プログラミング)|ステートメント]]を基本文にする[[手続き型プログラミング|手続き型]]や[[オブジェクト指向プログラミング|オブジェクト指向]]などの[[命令型プログラミング]]言語では必要に応じて構文スタイルを変えて実装されている。代表的なのは「式の引数への適用」に対する「引数を関数に渡す」である。ただし双方ともアセンブリコード上では同様なものに符号化される。


<syntaxhighlight lang="python" >
値(''value'')は代数的データ型(''algebraic data type'')として表現される。代数的データ型は[[型理論]]にある様々なタイプの複合体であり、各タイプの表現代数式を各言語仕様に沿ったプログラムパーツで置き換えてあらゆる値を数学的に表現する仕組みである。代数的データ型は言わば「型の式」であり、その式パターンが「型」になり、式パターンの構築が「型付け」になる。結果的に全ての値は「型」で分類される事になる。代数的データ型の実装方法はそれを意識させない位単純なものから忠実なものまで言語ごとに様々である。代数的データ型は単体値を兼ねたあらゆる[[多重集合]]の表現になる。命令型言語での導入例はまず無くより平易で直感的な構造体やクラスが型付けに使われている。
def square(n):
return n ** 2
</syntaxhighlight>


次の <code>countup</code> 関数は、同じ <code>1</code> を渡しても、それまでに <code>countup</code> 関数がどのような引数で呼ばれていたかによって、返り値が <code>1</code>, <code>2</code>, <code>3</code>, ... と変化するため、引数の値だけで結果の値が定まらないような参照透過性のない関数であり、数学的な関数とはいえない<ref name="名前なし-1"/>。
=== 式と関数 ===
{{出典の明記|date=2020年5月6日 (水) 02:29 (UTC)|section=1}}
*関数型プログラムの基本文は[[式 (プログラミング)|式]](''expression'')である。
*式は、値(''value'')と演算子(''operator'')と関数(''function'')で構成される。値は[[束縛変数]]と[[自由変数と束縛変数|自由変数]]を包括する。式内の変数部分が特定される前の式は評価できない[[ボトム型]]存在である。特定後は[[評価戦略]]に従ったタイミングで評価(''evaluation'')されて式存在から値存在になる。
*式は値と同一視されるので上述の式と値は相互再帰の関係にある。式内の値は他の式の評価値である事があり、その式内にもまた他の値があるといった具合である。この仕組みは[[高階論理]]''と呼ばれる。''
*関数も値と同一視される。関数は式に引数を結び付ける機能であり、これは式の引数への[[写像|適用]](''application'')と呼ばれる。式内の仮引数(''parameter'')箇所に実引数(''argument'')が順次当てはめられ、式ツリーの終端式が評価値になる。
*関数は、式を第1引数に適用したもの→第2引数に適用したもの→第x引数に適用したもの→評価値、という形をとる。引数を1個ずつ適用する形態は[[カリー化]]と呼ばれる。2個以上の引数を同時適用する形態は非カリー化と呼ばれる。関数の型は「A→B→C→D」のように各引数値から評価値までの写像パターンで表現される。
*関数も[[高階論理]]に組み込まれている。引数値または評価値として扱うことができる関数は[[第一級関数]]と呼ばれる。その第一級関数を扱うことができる関数は[[高階関数]]と呼ばれる。
*カリー化された関数は引数の適用を途中で止めて残り引数を後から適用できる第一級関数を生成できる。これは部分適用と呼ばれる。
*片方の評価値と片方の第1引数が同じ型の両関数は任意に連結できる。この双方の写像のつなぎ合わせは関数合成と呼ばれる。
*仮引数記述を省略した関数はポイントフリーと呼ばれ、その省略箇所に先行式評価値が実引数として暗黙適用される。実引数記述を省略して先行式評価値を後続関数の仮引数箇所に暗黙適用するのもポイントフリーと呼ばれる。この暗黙適用の式を並べて連鎖させる手法は[[パイプライン処理|パイプライン]]と呼ばれる。言語によっては特別な演算子と併せて明示する。
*関数は名前付きと名前無しの二通りある。後者はラムダ抽象を模した構文で式中に直接定義される。これは[[無名関数]]と呼ばれる。式内に自由変数を持った無名関数は[[クロージャ]]と個別に定義される。自由変数には外部データが代入される。自身を参照する無名関数を内包したデータ構造体(=[[関数オブジェクト]])もクロージャに相当する。
*[[無名関数]]は引数をピュア[[写像|マッピング]]する純粋関数であるが、毎回違う値が渡される用途から事実上[[メモ化]]できない事がコーディング上の利便性を除いた存在理由になっている。[[クロージャ]]の引数[[写像|マッピング]]は式内の自由変数に影響され、またその自由変数に作用する事もある即ち副作用要素を閉包した非純粋関数である。
*関数の名前は、それに結び付けられた式または式ツリーの[[不動点]]の表現になる。自式の不動点を式内に置いて新たな引数と共に[[高階論理]]の式として評価する手法は[[再帰]]と呼ばれる。
*イミュータブル性が重視されない場合、関数の終端式での再帰は、実引数の更新+先端式へのアドレスジャンプと同等に見なせるので専らそちらに最適化される。これは[[末尾再帰]]と呼ばれる。相互再帰を同様に最適化したものは兄弟再帰(''sibling recursion'')と呼ばれる。
*リスト処理時にリストの各要素に対する作用子として渡される第一級関数は[[反復子|イテレータ]]と呼ばれる。作用後の各要素を別の新生リストに向けて複製する働きを加えたものは[[ジェネレータ (プログラミング)|ジェネレータ]]と呼ばれる。これは[[イミュータブル]]重視時に多用される。前者はポイントフリーの無名関数、後者はポイントフリーのクロージャとして定義される事が多い。
*任意のタイミングで遅延評価(''call/cc'')される用途の第一級関数は特別に[[継続]]と呼ばれる。関数の引数を順々に評価して間に分岐などを挟める[[継続渡しスタイル]]はその応用例である。
*部分関数は引数によって[[ボトム型]]を返せる関数である。ボトム型は命令型言語における例外発生と同等に解釈できる。
*演算子はデフォルトの式内容を持ち、引数が1~2個に限定された関数と同義である。部分適用された演算子はセクションと呼ばれる第一級関数になる。演算子は任意の型にフックさせた再定義および追加定義ができる。これはアドホック多相と呼ばれる。


<syntaxhighlight lang="python" >
=== 値と代数的データ型 ===
counter = 0
{{出典の明記|date=2020年5月6日 (水) 02:30 (UTC)|section=1}}
def countup(n):
*値(''value'')は代数的データ型(''algebraic data type'')として表現される。代数的データ型は[[型理論]]にある様々なタイプの複合体である。代数的データ型は言わば「型の式」である。
global counter
*代数的データ型の式パターンは型構築子(''type constructor'')に束縛される。型構築子は新たな代数的データ型の識別名になる。式パターン内で代数的データ型は入れ子にできる。その入れ子とプロパー型は式パターン内で型変数(''type variable'')として扱われ、パラメトリック多相で総称化できる。型構築子は型引数(''type parameter'')と併せて定義され、総称化された各要素を決定する。
counter += n
*数値、論理値、文字値、文字列は[[プリミティブ型|プロパー型]](''proper type'')に分類され、最も基本的な式パターン要素になる。
return counter
*代数的データ型は、代数的データ型の入れ子で帰納的に構成される事もあるがその末端は必ずプロパー型になる。この帰納的な仕組みは[[高階論理|高階]]型(''higher-order types'')と呼ばれる。
</syntaxhighlight>
*代数的データ型は、プロパー型に到るまでの帰納パターンである[[カインド (型理論)|カインド]]で抽象化分類される。カインドは「*→*」「*」のように表現される。カインドはパターンマッチングと型シノニムの成立基準になる。
*左辺のもので右辺のものを置き換えられるという代数的データ型間の[[項書き換え]]ルールを定義できる。これは型シノニムと呼ばれる。[[リスコフの置換原則]]に似たものである。
*代数的データ型は、[[直積集合|直積型]](''product type'')[[非交和|非交和型]](''sum type'')帰納型(''inductive type'')[[依存型]](''dependent type'')ユニット型(''unit type'')などのタイプを持つ。式的役割は直積型=×演算子、非交和型=+演算子、帰納型=式再帰または高階式、依存型=パターンマッチング式、ユニット型=NILである。この5タイプで大半の値を表現できる。
*直積型は、(A, B) のような[[タプル]]のパターンを表わす。また標準的な[[構造体|レコード]]を表現する。
*非交和型は、(A | B) のような[[共用体|修飾共用体]]または[[列挙型]]のパターンを表わす。
*帰納型は、[[ボックス化]]と前述の入れ子のパターンを表わす。また帰納型と非交和型とユニット型は併用されて[[連結リスト]]、[[二分木]]、[[ツリー構造|データツリー]]のパターンを表わす。
*依存型は、一つの依存値による[[パターンマッチング]]式をそのままタイプと見なしたものである。その[[パターンマッチング|ケース節]]パターンのみはオプション型(''option type'')[[ガード (プログラミング)|ガード節]]パターンのみはリファイン型(''refinement type'')と個別定義される。これらは[[動的配列]]、Maybe値、リスト内包表記などの構造を表わす。
*ユニット型は、NILないしVOIDであり空集合のパターンを表わす。
*交差型(''intersection type'')は、型クラスや型エイリアスなどのアドホック多相によるパターンの表現に用いられる。
*[[パターンマッチング]]式は、CASE式の値に依存した依存型またはオプション型のその場構築である。条件分岐式(IF-THEN-ELSE)は、IF式の値に依存したリファイン型のその場構築である。前者は型推論と式評価による等価性または等値性のパターン審査を行う。後者は式評価による等値性または順序性の論理的審査を行う。
*関数の写像パターンは指数型(''exponential type'')で説明される。”関数適用の評価値”は指数型と直積型の併用で表現される。そのまま関数の型(''function type'')と呼ばれる事が多い。関数のパターンマッチングはもっぱらアドホック多相の方で解釈される。
*[[型推論]]は、代数的データ型の式パターンを等価性を審査できる形まで演繹する機能である。これはいわゆる「型」を導き出すのと同義である。この機能により束縛変数の型注釈はもっぱら省略される。型推論は値の等価性審査の手段であり、いわゆる型チェックや遅延パターンマッチングなどを実現する。

=== 評価戦略 ===
関数型プログラミングにおける[[評価戦略]]とは「式存在」を「値存在」にする評価タイミングの定義を指す。これはまず正格評価(''strict evaluation'')と非正格評価(''non-strict evaluation'')の二つに大別される。前者の式存在は、関数による適用と同時に評価されて値存在になり、または変数による束縛と同時に評価されて値存在になる。関数の引数節で直積された式存在は理論上全て同時に評価される事になる。その実装は直積された式存在を副作用を伴わずに並行計算するか、そうでない場合は一つ一つ評価していく事になる。単に一つ一つ評価していくものは[[先行評価]]になり、ここでも副作用を伴わない事が原則とされるが必須ではなくなる。

後者の非正格評価はほとんどのケースで[[遅延評価]]と同義の言葉になる。遅延評価の式存在は、関数に適用されても式存在のままであり、または変数に束縛されても式存在のままである。後続式において改めて他の関数ないし演算子に適用される時に初めて評価されて値存在になり、または改めて他の変数に束縛される時に初めて評価されて値存在になる。これが遅延評価のデフォルトタイミングである。[[継続]]コール(''call/cc'')手法や不可反駁(''irrefutable'')指定によって更に評価を遅延させる事もできる。継続コールは変数束縛した第一級関数またはクロージャを任意のタイミングで評価して値を導出できる機能である。これは値の導出後も式存在のままなので再利用できる。コール前の部分適用とコール時の引数適用、クロージャの方では自由変数への任意時代入も可能である。不可反駁指定はその式存在の変数部分が不特定で[[ボトム型]]を導出する場合は評価を取り止め、特定してる場合のみに評価を成立させて値存在にする機能である。ただしこれは遅延パターンマッチングでワンクッション置くための内包表記用途にほぼ限定されている。代数的データ型の式パターンは全て遅延評価対象になり、これによって無限リストの表現が可能になっている。


関数型プログラミングは、参照透過性を持つような数学的な関数を使って組み立てた'''式'''が主役となる<ref name="名前なし-1"/>。別の箇所に定義されている処理を利用することを、手続き型プログラミング言語では「関数を実行する」や「関数を呼び出す」などと表現するが、関数型プログラミング言語では「式を評価する」という表現も良く使われる<ref name="名前なし-3">{{harvnb|本間|類地|逢坂|2017|p=4}}</ref>。
プログラム実装上において先行評価は決して必須ではないが遅延評価の方は必須になる。帰納、再帰、無限、極限といった代数的表現は遅延評価でのみ実装できる。部分関数も遅延評価前提の式存在である。フロー分岐によって参照されなくなる式評価を結果的にスキップできる事は処理の高速化につながる。それはしばしばテクニックとしても用いられる。またボトム型が発生する式評価のスキップは[[フォールトトレラント設計|フォールトトレランス]]にもつながる。ただし柔軟な評価タイミングは同時に式存在と値存在の把握を難しくてバグの温床になりがちである。従って遅延評価が必要になる処理以外では、評価タイミングが明白な先行評価を標準にする方が理想と見なされている。従来の関数型言語はおおむね遅延評価を標準にしているが、先行評価標準の方が望ましいとする見方も広まっており純粋関数型や並行プログラミング分野では顕著である。


=== 参照透過性 ===
=== 参照透過性 ===
[[参照透過性]]とは関数は同じ引数値に対して必ず同じ評価値を恒久的に導出し、その評価過程において現行計算枠外の情報資源に一切の作用を及ぼさないというプロセス上の枠組みを意味する。現行計算枠外のいずれかの情報資源が変化するのと同時にいずれかの関数の評価過程も変化してしまう現象は[[副作用 (プログラム)|副作用]]と呼ばれる。参照透過性はこの副作用の排除も同時に意味している。参照透過性の実装は、プログラムから代入(=''assignment''、≠''substitution'')処理を排除する事で具体的に成立する。


{{main|参照透過性}}
純粋関数型言語は[[参照透過性]]をプログラム全体の枠組みにしている。その主な利点は一定の[[証明論]]に基づいたプルーフアシスタントによる[[正当性 (計算機科学)|プログラム正当性]]の自動的な[[形式的検証]]および[[論証|数学的論証]]が可能になる事である。プルーフアシスタントはソフトウェアツールである。ただしプログラム正当性が[[数学的証明|証明]]されてもランタイム環境側のプログラム運用部分のデバッグは残される事になる。プログラム全体に参照透過性を適用するには前述の”代入”を排除するコーディング上の注意の他に、プログラムレベルでは回避できない各種I/O作業に伴う必然的副作用の論理的排除も必要になるので専用のランタイム環境上での動作が必須になる。ランタイム環境は”環境データ”を走行プログラムとの仲介にする。プログラム内の各関数は、ライナー型引数値として渡された”環境データ”に作用するという形で各種I/O作業を行う。その仮想的I/O作業はランタイム環境側で実際に代行され、そのI/O作業で変化したコンピュータ環境はその都度”環境データ”に反映される。関数は”環境データ”をライナー型返り値として渡し返す。ライナ―型(''linear type'')は[[型理論]]における派生構造型(''substructural type'')の一形態であり[[線形合同法]]に似たデータ生成アルゴリズムによる全体的な整合性を取るための[[型システム]]である。これはユニークネス型とも呼ばれる。”環境データ”に”関連値”を注入する仕組みはアフィン型(''affine type'')、抽出する仕組みは関連型(''relevant type'')と呼ばれる。双方とも派生構造型の一形態である。このように各種I/O作業を”環境データ”への作用という形にする事で副作用を論理的に排除し、ライナー型の疑似乱数列に似た仕組みで参照透過性を論理的に維持している。この論理的とは言わば見せかけの意味に近いが、一定の問題をプログラム側から綺麗に切り離してランタイム環境側に丸投げできるメカニズムは開発上極めて有益と見なされている。なお、型システムの代わりに[[圏論]]を利用して全体的な整合性を取るための[[デザインパターン (ソフトウェア)|デザインパターン]]手法が[[モナド (プログラミング)|モナド]]である。”環境データ”を加工するモナド演算子は数学問題における[[公理]]や[[公式]]と同等の存在であり、決められたルールに従って用いるだけで副作用の排除と参照透過性の維持を論理的に表現できる。


参照透過性とは、同じ値を与えたら返り値も必ず同じになるような性質である<ref name="名前なし-1"/>。参照透過性を持つことは、その関数が'''状態を持たない'''ことを保証する<ref name="名前なし-4">{{harvnb|本間|類地|逢坂|2017|p=5}}</ref>。状態を持たない数学的な関数は、並列処理を実現するのに適している<ref name="名前なし-4"/>。関数型プログラミング言語の内で、全ての関数が参照透過性を持つようなものを純粋関数型プログラミング言語という<ref name="名前なし-4"/>。
=== 型システム ===


== 歴史 ==
=== 入出力 ===
1930年代に数学者[[アロンゾ・チャーチ]]によって発明された[[ラムダ計算]]は[[写像|関数適用]]をベースにした計算用[[形式体系]]であり、1937年に数学者[[アラン・チューリング]]自身により[[チューリング完全]]の性質が明らかにされて、[[チューリングマシン]]と等価な[[計算模型]]である事が証明されている。この経緯からラムダ計算は関数型プログラミングの基底に据えられた。ラムダ計算と同等の[[計算理論]]に[[コンビネータ論理]]があり、1920年代から1930年代にかけて数学者[[ハスケル・カリー]]らによって発明されている。こちらは関数型プログラミングの原点である[[高階論理]]式の基礎モデルにされた。チャーチはラムダ計算を拡張してその各タームに型を付与した[[型付きラムダ計算|型付けラムダ計算]]も考案しており、これは関数型プログラミングにおける[[型理論]]と[[型システム]]の源流になった。


関数型プログラミングでは、数学的な関数を組み合わせて計算を表現するが、それだけではファイルの読み書きのような外界とのやり取りを要する処理を直接的に表現できない<ref name="名前なし-5">{{harvnb|本間|類地|逢坂|2017|p=6}}</ref>。このような外界とのやり取りを '''I/O (入出力)''' と呼ぶ<ref name="名前なし-5"/>。数学的な計算をするだけ、つまり <code>1 + 1</code> のようなプログラム内で完結する処理ならば、入出力を記述できなくても問題ないが、現実的なプログラムにおいてはそうでない<ref name="名前なし-5"/>。
'''1950年代'''


非純粋な関数型プログラミング言語においては、式を評価すると同時に I/O が発生する関数を用意することで入出力を実現する<ref name="名前なし-5"/>。たとえば、 [[F Sharp|F# 言語]]では、<code>printfn "Hi."</code> が評価されると、 <code>()</code> という値が戻ってくると同時に、画面に <code>Hi.</code> と表示される I/O が発生する<ref name="名前なし-5"/>。
初の関数型プログラミング言語とされる「[[LISP]]」は、1958年に[[マサチューセッツ工科大学]]の計算機科学者[[ジョン・マッカーシー]]によって開発された。LISPの関数はラムダ計算の形式を元に定義され再帰可能に拡張されており、式のリスト化とその遅延評価および高階評価など幾つかの関数型的特徴を備えていた。LISPは数多くの”方言”を生み出しているが、その中でも「[[Scheme]]」「[[Dylan]]」「[[Racket]]」「[[Clojure]]」「Julia」は取り分け関数型の特徴を明確にした言語である。1956年に公開された「[[Information Processing Language]]」の方が先駆であるが、こちらはアセンブリベースの[[低水準言語]]なので前段階扱いである。IPLが備えていた[[ニーモニック・コード|ニーモニックコード]]のリストをオペランドにできるジェネレータ機能はLISPに影響を与えたと言われる。高階オペランドの演算処理は高階関数と同じ働きをし、メモリ一括処理のストリング命令の効率を高めるなどした。


[[Haskell]] では、評価と同時に I/O が行われる関数は存在しない<ref name="名前なし-5"/>。たとえば、 <code>putStrLn "Hi."</code> という式が評価されると <code>IO ()</code> 型を持つ値が返されるが画面には何も表示されず、この値が Haskell の処理系によって解釈されて初めて画面に <code>Hi.</code> と表示される<ref name="名前なし-5"/>。 '''I/O アクション'''とは、ファイルの読み書きやディスプレイへの表示などのような I/O を表現する式のことである<ref name="名前なし-5"/><ref>{{harvnb|本間|類地|逢坂|2017|p=23}}</ref>。 <code>IO a</code> という型は、コンピュータへの指示を表す I/O アクションを表現している<ref name="名前なし-5"/><ref>{{harvnb|本間|類地|逢坂|2017|p=31}}</ref>。ここでの <code>IO</code> は[[モナド (プログラミング)|モナド]]と呼ばれるものの一つである<ref>{{harvnb|本間|類地|逢坂|2017|p=32}}</ref>。
'''1960年代'''


[[Clean]] では、一意型を用いて入出力を表す。
1964年に計算機科学者[[ケネス・アイバーソン]]が開発した「[[APL]]」は、数多く定義された関数記号を多次元配列データに適用する機能を中心にした言語であり、取り分け[[スプレッドシート]]処理に対する効率性が見出されて、1960年代以降の商業分野と産業分野に積極導入された。APLは関数型ではなく配列プログラミング型に位置付けられてるが、配列を始めとするデータ集合に対する関数適用の有用性を特に証明した言語になった。そのデータ集合処理の可能性に注目した「J」「K」「Q」といった派生言語が後年に登場している。続く1966年に発表された「[[ISWIM]]」は関数型を有用な構文スタイルとして扱うマルチパラダイム言語の原点とされ、[[ALGOL]]を参考にした構造化プログラミングに高階関数とwhereスコープが加えられていた。60年代の関数型プログラミングの歴史はもっぱらLISPの発展を中心にしていたが、ISWIMは後年の「ML」「Scheme」のモデルにされている。


=== 手法 ===
'''1970年代'''


{{節スタブ|1=[[モナド (プログラミング)|モナド]]・[[永続データ構造]]|date=2021年3月}}
相互[[自動定理証明]]に向けて始められた「''Logic for computable functions''」プロジェクトの中で1973年に導入された「[[ML (プログラミング言語)|ML]]」は[[代数的データ型]]、[[多態性|パラメトリック多相]]、[[型推論]]などを備えた関数型言語であり、計算機科学者[[ロビン・ミルナー]]によって開発された。また1975年に[[MIT人工知能研究所]]の計算機科学者[[ガイ・スティール・ジュニア|ガイ・スティール]]と工学者[[ジェラルド・ジェイ・サスマン|ジェイ・サスマン]]が設計してAIリサーチ用に導入された「[[Scheme]]」は任意時評価(call/cc)[[継続|第一級継続]]などを備え、レキシカルスコープで構造化が図られており[[末尾再帰]]を最適化していた。MLとScheme双方の登場は関数型プログラミングのマイルストーンになった。また同年代に関数の数学的純粋性を重視した「SASL」と[[クリーネの再帰定理]]の実装を主な目的にした「Hope」も発表されている。1977年、[[バッカス・ナウア記法]]と[[FORTRAN]]開発の功績でこの年の[[チューリング賞]]を受けた計算機科学者[[ジョン・バッカス]]は「''Can Programming Be Liberated From the von Neumann Style? -A Functional Style and Its Algebra of Programs-''」と題した記念講演を行い、一説にはこれを境にして関数型(''functional'')というパラダイム名が定着したと言われる。なお同時に発表された「[[FP (プログラミング言語)|FP]]」は関数水準(''function-level'')言語として紹介されている。バッカスはFPのプログラムをアトム+関数+フォーム(=高階関数)の階層構造と定義し、[[プロセス代数|代数]]を用いるフォームの結合で全体構築されると提唱した。[[ノイマン型]]からの脱却を題目に掲げているバッカスの理論は、後年のCPUに導入される並列[[パイプライン処理]]に通じる構想であった。


最初に解の集合となる候補を生成し、それらの要素に対して1つ(もしくは複数)の解にたどり着くまで関数の適用とフィルタリングを繰り返す手法は、関数型プログラミングでよく用いられるパターンである<ref name="名前なし-6">{{harvnb|Lipovača|2012|p=22}}</ref>。
'''1980年代'''


Haskell では、関数合成の二項演算子を使って'''ポイントフリースタイル'''で関数を定義することができる<ref name="名前なし-6"/>。関数をポイントフリースタイルで定義すると、データより関数に目が行くようになり、どのようにデータが移り変わっていくかではなく、どんな関数を合成して何になっているかということへ意識が向くため、定義が読みやすく簡潔になることがある<ref name="名前なし-6"/>。関数が複雑になりすぎると、ポイントフリースタイルでは逆に可読性が悪くなることもある<ref name="名前なし-6"/>。
数学者[[ペール・マルティン=レーフ|マルティン=レーフ]]が1972年から提唱していた直感的型理論は、関数型プログラミングの世界に[[型理論]]の[[依存型]]の重要性を認識させて[[型システム]]の拡張に貢献した。1978年にML設計者のミルナーが発表した型推論アルゴリズムが1982年に証明されると、''Hindley–Milner''型体系と定義されて型システムは更に成熟した。1983年にMLの標準化を目的にした「[[Standard ML]]」が発表され、続く1985年にMLの派生言語「Caml」が公開された。同じく1985年にSASLの後継として発表された「[[Miranda]]」は、遅延評価を標準にしながら関数の数学的純粋性を追求した言語であり、関数型プログラミング研究用[[オープン標準|オープンスタンダード]]のコンセンサスで1987年から策定が開始された[[Haskell]]のモデルになりその進捗を大きく後押しした。それと前後してMirandaは1987年公開の純粋関数型言語「[[Clean]]」にも大きな影響を与えている。Cleanは後発のHaskellをも叩き台にして改良を続けた。また関数型と[[並行計算]]の適性が認識される中で1986年の通信業界で開発された「[[Erlang]]」は[[並行プログラミング]]指向の面で特に注目を集めている言語である。


=== 言語 ===
'''1990年代'''


関数型プログラミング言語とは、関数型プログラミングを推奨している[[プログラミング言語]]である<ref name="名前なし-1"/>。略して関数型言語ともいう<ref name="名前なし-1"/>。全ての関数が参照透過性を持つようなものを、特に{{仮リンク|純粋関数型プログラミング言語|en|purely functional programming language}}という<ref name="名前なし-4"/>。そうでないものを非純粋であるという<ref name="名前なし-5"/>。
1990年にこれも関数型プログラミングのマイルストーン的な純粋関数型言語「[[Haskell]]」が初リリースされた。1992年に[[動的型付け]]レコードクラスと[[多重ディスパッチ]]メソッドを扱う関数型言語「[[Dylan]]」が登場した。1993年に[[ベクトル]]、[[行列]]、[[表 (データベース)|表テーブル]]などのデータストラクチャを扱えて[[統計的検定]]、[[時系列分析]]、[[データ・クラスタリング|クラスタリング]]分野に特化した関数型言語「[[R言語|R]]」が発表された。1995年にLISPの[[マクロ (コンピュータ用語)|マクロ]]機能を大幅に強化したコンポーネント指向により各分野に合わせた[[ドメイン固有言語]]として振る舞える「[[Racket]]」が登場した。1996年にはML系列のCamlにオブジェクト指向視点の[[抽象データ型]]を導入した「[[OCaml]]」が公開された。90年代の関数型プログラミングの歴史では、関数の数学的純粋さを追求する[[参照透過性]]指向とオブジェクト指向との連携が比較的目立っていた。日本ではStandard MLに独自の拡張を施した「SML#」が発表されている。風変りなものに[[コンビネータ論理]]の形式に立ち返った「[[Unlambda]]」がある。[[論理型プログラミング]]との親和性も見直されるようになり1995年に「Mercury」が公開された。論理型のルール&ファクトパラダイムはデータ集合に対するフィルタリングなどに活用された。1988年公開の「[[Wolfram (プログラミング言語)|Wolfram]]」はAPLスタイルのリスト処理に一定のデータリレーションを定義できる[[項書き換え]]を組み合わせた言語で90年代を通して改良が続けられていた。


関数型プログラミング言語の多くは、言語の設計において何らかの形で[[ラムダ計算]]が関わっている<ref name="名前なし-3"/>。ラムダ計算はコンピュータの計算をモデル化する体系の一つであり、記号の列を規則に基づいて変換していくことで計算が行われるものである<ref name="名前なし-3"/>。
'''2000年代'''


{| class="wikitable sortable"
2000年代になると関数型プログラミングへの注目度は更に高まり、マルチパラダイムに応用された関数型言語が様々に登場した。2003年のJava仮想マシン動作「[[Scala]]」、2005年のマイクロソフト製「[[F Sharp|F#]]」、2007年のLISP方言「[[Clojure]]」など数々のポピュラー言語が生み出されている。また直感的型理論と[[カリー=ハワード同型対応|カリー=ハワード同型対応]]の理論に基づいたプルーフアシスタント(''Proof assistant'')によるプログラム正当性の数学的証明を指向した関数型言語が支持され、2004年に「Epigram」2007年に「[[Agda]]」および純粋関数型「Idris」が発表されている。関数型構文の有用性がより広く認識されるに従い、オブジェクト指向言語やスクリプト言語にも積極的に導入されるようになった。産業分野からも注目されるようになり、[[Constructive Solid Geometry|CSG]]幾何フレームワーク上で動く[[CAD]]への導入も始められた。しかし関数型コンセプトに馴染まないオペレーターが定数化規則による値の再代入制限に困惑して設計作業に支障をきたすなどの弊害も明らかになっている。
|+ 関数型プログラミング言語
|-
! 名前
! 型付け
! 純粋性
! 評価戦略
! 理論的背景
|-
| [[Clean]]
| 静的型付け
| 純粋
| 遅延評価
|
|-
| [[Elm (プログラミング言語)|Elm]]
| 静的型付け
| 純粋
| 正格評価
|
|-
| [[Erlang]]
| 動的型付け
| 非純粋
| 正格評価
|
|-
| [[F Sharp|F#]]
| 静的型付け
| 非純粋
| 正格評価
|
|-
| [[Haskell]]<ref name="名前なし-2"/>
| 静的型付け<ref name="名前なし-2"/>
| 純粋<ref name="名前なし-2"/>
| 遅延評価<ref name="名前なし-2"/>
| 型付きラムダ計算<ref name="名前なし-3"/>
|-
| [[Idris (プログラミング言語)|Idris]]
| 静的型付け
| 純粋
| 正格評価
| 型付きラムダ計算
|-
| [[Lazy K]]
| 型なし
| 純粋
| 遅延評価
| コンビネータ論理
|-
| [[LISP|LISP 1.5]]<br>[[Scheme]]<br>[[Common Lisp]]<br>[[Clojure]]
| 動的型付け
| 非純粋
| 正格評価
| 型無しラムダ計算<ref name="名前なし-3"/>
|-
| [[LISP]]の各種方言<ref name="名前なし-3"/>
| 方言による
| 方言による
| 方言による
|
|-
| [[Miranda]]
| 静的型付け
| 純粋
| 遅延評価
|
|-
| [[ML (プログラミング言語)|ML]]<br>[[Standard ML]]<br>[[OCaml]]
| 静的型付け
| 非純粋
| 正格評価
|-
| [[Scala]]
| 静的型付け
| 非純粋
| 正格評価
|
|-
| [[Unlambda]]
| 型なし
| 非純粋
| 正格評価
| コンビネータ論理
|-
|[[Lean (証明アシスタント)|Lean]]
|静的型付け
|純粋
|正格評価
|型付きラムダ計算
|}


=== 手続き型プログラミングとの比較 ===
== 代表的な関数型言語 ==
'''[[LISP]]''' (1958年)


[[C|C 言語]]や [[Java]] 、 [[JavaScript]] 、 [[Python]] 、 [[Ruby]] などの2017年現在に使われている言語の多くは、手続き型の文法を持っている<ref name="名前なし-7">{{harvnb|本間|類地|逢坂|2017|p=22}}</ref>。そのような言語では、文法として式 (expression) と文 (statement) を持つ<ref name="名前なし-7"/>。ここでの式は、計算を実行して結果を得るような処理を記述するための文法要素であり、加減乗除や関数呼び出しなどから構成されている<ref name="名前なし-7"/>。ここでの文は、何らかの動作を行うようにコンピュータへ指示するための文法要素であり、条件分岐の [[if文|if 文]]やループの [[for文|for 文]]と [[while文|while 文]]などから構成されている<ref name="名前なし-7"/>。手続き型の文法では、式で必要な計算を進め、その結果を元にして文でコンピュータ命令を行うという形で、プログラムを記述する<ref name="名前なし-7"/>。このように、[[手続き型言語]]で重要なのは文である<ref name="名前なし-7"/>。
: 動的型付け


それに対して、[[関数型言語]]で重要なのは式である<ref name="名前なし-7"/>。関数型言語のプログラムはたくさんの式で構成され、プログラムそのものも一つの式である<ref name="名前なし-7"/>。たとえば、 Haskell では、プログラムの処理の記述において文は使われず、外部の定義を取り込む import 宣言も処理の一部として扱えない<ref name="名前なし-7"/>。関数型言語におけるプログラムの実行とは、プログラムを表す式の計算を進めて、その結果として値 (value) を得ることである<ref name="名前なし-7"/>。式を計算することを、'''評価する''' (evaluate) という<ref name="名前なし-7"/>。
'''[[ISWIM]]''' (1966年)← LISP、[[ALGOL]]


手続き型言語ではコンピュータへの指示を文として上から順に並べて書くのに対して、関数型言語では数多く定義した細かい式を組み合わせてプログラムを作る<ref name="名前なし-7"/>。手続き型言語では文が重要であり、関数型言語では式が重要である<ref name="名前なし-8">{{harvnb|本間|類地|逢坂|2017|pp=22–23}}</ref>。
: 静的型付け


式と文の違いとして、型が付いているかどうかというのがある<ref name="名前なし-8"/>。式は型を持つが、文は型を持たない<ref name="名前なし-8"/>。プログラム全てが式から構成されていて、強い静的型付けがされているのならば、プログラムの全体が細部まで型付けされることになる<ref name="名前なし-8"/>。このように細部まで型付けされているようなプログラムは堅固なものになる<ref name="名前なし-8"/>。
[[ML (プログラミング言語)|'''ML''']] (1973年)← ISWIM


== 歴史 ==
: 静的型付け
=== 1930年代 ===
関数型言語の開発において、[[アロンゾ・チャーチ]]が1932年<ref group="注釈">{{harv|Church|1932}}</ref>と1941年<ref group="注釈">{{harv|Church|1941}}</ref>に発表した[[ラムダ計算]]の研究ほど基本的で重要な影響を与えたものはない<ref name="名前なし-9">{{harvnb|Hudak|1989|p=363}}</ref>。ラムダ計算は、それが考え出された当時は[[プログラム (コンピュータ)|プログラム]]を実行するような[[コンピュータ]]が存在しなかったために[[プログラミング言語]]として見なされなかったにもかかわらず、今では最初の関数型言語とされている<ref name="名前なし-9"/>。1989年現在の関数型言語は、そのほとんどがラムダ計算に装飾を加えたものとして見なせる<ref name="名前なし-9"/>。


=== 1960年代 ===
'''[[Scheme]]''' (1975年)← LISP、ISWIM
1960年に[[ジョン・マッカーシー]]等が発表した [[LISP]] は関数型言語の歴史において重要である<ref>{{harvnb|Hudak|1989|p=367}}</ref>。ラムダ計算は LISP の基礎であると言われるが、マッカーシー自身が1978年<ref group="注釈">{{harv|McCarthy|1978}}</ref>に説明したところによると、[[匿名関数]]を表現したいというのが最初にあって、その手段としてマッカーシーはチャーチのラムダ計算を選択したに過ぎない<ref>{{harvnb|Hudak|1989|pp=367–368}}</ref>。


歴史的に言えば、 [[LISP]] に続いて関数型プログラミングパラダイムへ刺激を与えたのは、1960年代半ばの{{仮リンク|ピーター・ランディン|en|Peter Landin}}の成果である<ref name="名前なし-10">{{harvnb|Hudak|1989|p=371}}</ref>。ランディンの成果は[[ハスケル・カリー]]と[[アロンゾ・チャーチ]]に大きな影響を受けていた<ref name="名前なし-10"/>。ランディンの初期の論文は、ラムダ計算と、機械および高級言語 ([[ALGOL 60]]) との関係について議論している<ref name="名前なし-10"/>。ランディンは、1964年<ref group="注釈">{{harv|Landin|1964}}</ref>に、 [[SECDマシン|SECD マシン]]と呼ばれる抽象的な機械を使って機械的に式を評価する方法を論じ、1965年<ref group="注釈">{{harv|Landin|1965}}</ref>に、ラムダ計算で ALGOL 60 の非自明なサブセットを形式化した<ref name="名前なし-10"/>。1966年<ref group="注釈">{{harv|Landin|1966}}</ref>にランディンが発表した [[ISWIM]](If You See What I Mean の略)という言語(群)は、間違いなく、これらの研究の成果であり、[[構文]]や[[プログラム意味論|意味論]]において多くの重要なアイデアを含んでいた<ref name="名前なし-10"/>。 ISWIM は、ランディン本人によれば、「 LISP を、その名前にも表れた[[リスト (抽象データ型)|リスト]]へのこだわり、手作業のメモリ割り当て、ハードウェアに依存した教育方法、[[S式|重い括弧]]、伝統への妥協、から解放しようとする試みとして見ることができる」<ref name="名前なし-10"/>。関数型言語の歴史において ISWIM は次のような貢献を果たした<ref name="名前なし-11">{{harvnb|Hudak|1989|pp=371–372}}</ref>。
: LISP方言、動的型付け


* 構文についての革新<ref name="名前なし-10"/>
[[FP (プログラミング言語)|'''FP''']] (1977年)
** 演算子を前置記法で記述するのをやめて中置記法を導入した<ref name="名前なし-10"/>。
** let 節と where 節を導入して、さらに、関数を順序なく同時に定義でき、相互再帰も可能なようにした<ref name="名前なし-10"/>。
** 宣言などを記述する構文に、インデントに基づいたオフサイドルールを使用した<ref name="名前なし-10"/>。
* 意味論についての革新<ref name="名前なし-11"/>
** 非常に小さいが表現力があるコア言語を使って、構文的に豊かな言語を定義するという戦略を導入した<ref name="名前なし-10"/>。
** 等式推論 (equational reasoning) を重視した<ref name="名前なし-10"/>。
** 関数によるプログラムを実行するための単純な抽象機械としての SECD マシンを導入した<ref name="名前なし-11"/>。


ランディンは「それをどうやって行うか」ではなく「それの望ましい結果とは何か」を表現することに重点を置いており、そして、 ISWIM の宣言的なプログラミング・スタイルは命令的なプログラミング・スタイルよりも優れているというランディンの主張は、今日まで関数型プログラミングの賛同者たちから支持されてきた<ref name="名前なし-12">{{harvnb|Hudak|1989|p=372}}</ref>。その一方で、関数型言語への関心が高まるまでは、さらに10年を要した<ref name="名前なし-12"/>。その理由の一つは、 ISWIM ライクな言語の実用的な実装がなかったことであり、実のところ、この状況は1980年代になるまで変わらなかった<ref name="名前なし-12"/>。
: 純粋


[[ケネス・アイバーソン]]が1962年<ref group="注釈">{{harv|Iverson|1962}}</ref>に発表した [[APL]] は、純粋な関数型プログラミング言語ではないが、その関数型的な部分を取り出したサブセットがラムダ式に頼らずに関数型プログラミングを実現する方法の一例であるという点で、関数型プログラミング言語の歴史を考察する際に言及する価値はある<ref name="名前なし-12"/>。実際に、アイバーソンが APL を設計した動機は、配列のための代数的なプログラミング言語を開発したいというものであり、アイバーソンのオリジナル版は基本的に関数型的な記法を用いていた<ref name="名前なし-12"/>。その後の APL では、いくつかの命令型的な機能が追加されている<ref name="名前なし-12"/>。
'''[[Standard ML]]''' (1983年)← ML、Hope、[[Pascal|PASCAL]]


== 脚注 ==
: ML派生、静的型付け


{{脚注ヘルプ}}
'''[[Miranda]]''' (1985年)← ML、SASL、Hope


=== 注釈 ===
: 純粋、静的型付け


{{Notelist}}
'''[[Erlang]]''' (1986年)← LISP、[[Prolog]]、[[Smalltalk]]


=== 出典 ===
: 動的型付け


{{Reflist}}
'''[[Clean]]''' (1987年)← Miranda


== 参考文献 ==
: 純粋、静的型付け


* {{Cite Q|Q55890017|last=Church|first=Alonzo}}
'''[[Haskell]]''' (1990年)← ML、Scheme、Miranda、Clean、FP
* {{Cite Q|Q105884272|last=Church|first=Alonzo}}
* {{Cite Q|Q55871443|last=Hudak|first=Paul}}
* {{Cite Q|Q105954505|last=Iverson|first=Kenneth}}
* {{Cite Q|Q56048080|last=McCarthy|first=John}}
* {{Cite Q|Q30040385|last=Landin|first=Peter}}
* {{Cite Q|Q105941120|last=Landin|first=Peter}}
* {{Cite Q|Q54002422|last=Landin|first=Peter}}
* {{Cite Q|Q105845956|edition=1st (1st printing)|last=Lipovača|first=Miran}}
* {{Cite Q|Q105833610|edition=1st (1st printing)|last=本間|first=雅洋|last2=類地|first2=孝介|last3=逢坂|first3=時響}}


== 外部リンク ==
: 純粋、静的型付け


* [http://www.sampou.org/haskell/article/whyfp.html なぜ関数プログラミングは重要か]
'''[[Dylan]]''' (1993年)← Scheme、[[Common Lisp Object System|CLOS]]、[[ALGOL]]
* [https://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html lang|en|The Functional Programming Language XSLT - A proof through examples]([http://alamos.math.arizona.edu/courses/rychlik/CourseDir/589/Assignments/a3/fp.pdf PDF])


== 関連項目 ==
: LISP方言、動的型付け


* [[カリー化]]
[[R言語|'''R''']] (1993年)← Scheme、[[Common Lisp Object System|CLOS]]

: 動的型付け

'''[[Racket]]''' (1995年)← Scheme、[[Eiffel]]

: LISP方言、動的型付け

'''[[OCaml]]''' (1996年)← Caml、Standard ML、[[Modula-3]]

: ML派生、静的型付け

'''[[Scala]]''' (2003年)← Scheme、Haskell、OCaml、Erlang、[[Smalltalk]]、[[Java]]

: 静的型付け

[[F Sharp|'''F#''']] (2005年)← Haskell、OCaml、Erlang、Scala、[[Python]]、[[C♯]]

: 静的型付け

'''[[Clojure]]''' (2007年)← Scheme、Haskell、OCaml、Erlang、[[Java]]

: LISP方言、動的型付け

== 関数型プログラミングの例 ==
関数型プログラミングは「計算とは何か」という数学の理論を基礎にしており、関数型プログラミングがもつ[[計算モデル]]は'''関数モデル'''である<ref>計算モデル2 関数モデル. (中略) 関数モデルに基づくプログラミング言語. 関数型言語. Lisp [http://nous.web.nitech.ac.jp/individual/inuzuka/lecture/PLT/PLT07/ 犬塚信博 (2007)「プログラミング言語論 第1回 イントロダクション」名古屋工業大学]</ref>。たとえば、1 から 10 までの整数を足し合わせるプログラムを考える{{efn|本来は[[等差数列]]の和の公式を用いて定数時間で問題を解く方法が最適解だが、ここではプログラミングスタイルの比較のため数値計算的手法を用いる。}}。[[命令型プログラミング]]では以下のように[[ループ (プログラミング)|ループ]]文を使って変数に数値を足していく(計算機の状態を書き換える)命令を繰り返し実行するという形を取る。

* [[Pascal]]による例:
<syntaxhighlight lang="pascal">
program test;
var total, i : Integer;
begin
total := 0;
for i := 1 to 10 do
total := total + i;
WriteLn(total)
end.
</syntaxhighlight>

一方、関数型プログラミングでは、繰り返しには一時変数およびループを使わず、[[サブルーチン|関数]]の[[再帰呼び出し]]を使う。

* [[F Sharp|F#]]による例:
<syntaxhighlight lang="fsharp">
printfn "%d" (let rec sum x = if x > 0 then x + sum (x - 1) else 0
sum 10)
</syntaxhighlight>
<!--
<syntaxhighlight lang="haskell">
let
sum x = if x == 0 then 0
else x + sum (x - 1)
in
sum 10
</syntaxhighlight>
-->

ただし再帰呼び出しは[[スタックオーバーフロー]]の危険性やオーバーヘッドを伴うため、注意深く使用しなければならない<ref>[https://msdn.microsoft.com/ja-jp/library/dd233229(v=vs.120).aspx 関数 (F#) | MSDN]</ref>。通例、関数型言語では、[[末尾再帰]]呼び出し (tail-recursive call) の形で書かれた関数をループに展開する[[末尾再帰#末尾呼出し最適化|末尾呼出し最適化]]により、スタックオーバーフローの危険性および再帰のオーバーヘッドを解消できる。[[Scheme]]など、関数型言語の中には末尾再帰呼び出しの最適化を仕様で保証するものもある。再帰関数を末尾再帰に書き換えることが難しいケースも有り、そのような場合は一般的なループが採用される。

また、関数型言語は文 (statement) よりも式 (expression) を中心とした言語仕様となっていることも特徴である。前述の例において、再帰関数<code>sum</code>を[[束縛 (情報工学)|束縛]]する<code>let</code>は式である。また、条件分岐の<code>if-then-else</code>も式である。文よりも式で書けることが多いほうが都合がよい。

関数型言語は関数型プログラミングをサポートする言語ではあるが、手続き型プログラミングを行なうことも可能である。例えばF#では以下のようなPascal風の書き方もできる。

<syntaxhighlight lang="fsharp">
let mutable total = 0
for i = 1 to 10 do
total <- total + i
printfn "%d" total
</syntaxhighlight>

ただし[[Haskell]]のようにループ構文をサポートせず、従来の手続き型プログラミングが難しいケースもある。

逆に手続き型言語を使って関数型プログラミングを行なうことも可能であるが、末尾再帰呼び出しの最適化がサポートされるかどうかはコンパイラ次第である。

== 脚注 ==
{{脚注ヘルプ}}
=== 注釈 ===
{{Notelist}}
=== 出典 ===
{{Reflist}}

== 外部リンク ==
* [http://www.sampou.org/haskell/article/whyfp.html なぜ関数プログラミングは重要か]
* [http://www.topxml.com/xsl/articles/fp/ {{lang|en|The Functional Programming Language XSLT - A proof through examples}}]


{{プログラミング言語の関連項目}}


{{Normdaten}}
{{Normdaten}}
{{プログラミング言語の関連項目}}


{{DEFAULTSORT:かんすうかた}}
{{DEFAULTSORT:かんすうかたふろくらみ}}
[[Category:関数型言語|*]]
[[Category:関数型プログラミング|*]]
[[Category:プログラミングパラダイム]]
[[Category:プログラミングパラダイム]]

2024年11月3日 (日) 14:27時点における最新版

関数型プログラミング(かんすうがたプログラミング、: functional programming)とは、数学的な意味での関数を主に使うプログラミングのスタイルである[1]。 functional programming は、関数プログラミング(かんすうプログラミング)などと訳されることもある[2]

関数型プログラミング言語: functional programming language)とは、関数型プログラミングを推奨しているプログラミング言語である[1]。略して関数型言語: functional language)ともいう[1]

概要

[編集]

関数型プログラミングは、関数を主軸にしたプログラミングを行うスタイルである[1]。ここでの関数は、数学的なものを指し、引数の値が定まれば結果も定まるという参照透過性を持つものである[1]

参照透過性とは、数学的な関数と同じように同じ値を返す式を与えたら必ず同じ値を返すような性質である[1]。次の square 関数は、 2 となるような式を与えれば必ず 4 を返し、 3 となるような式を与えれば必ず 9 を返し、いかなる状況でも別の値を返すということはなく、これが参照透過性を持つ関数の一例となる[1]

def square(n):
  return n ** 2

次の countup 関数は、同じ 1 を渡しても、それまでに countup 関数がどのような引数で呼ばれていたかによって、返り値が 1, 2, 3, ... と変化するため、引数の値だけで結果の値が定まらないような参照透過性のない関数であり、数学的な関数とはいえない[1]

counter = 0
def countup(n):
  global counter
  counter += n
  return counter

関数型プログラミングは、参照透過性を持つような数学的な関数を使って組み立てたが主役となる[1]。別の箇所に定義されている処理を利用することを、手続き型プログラミング言語では「関数を実行する」や「関数を呼び出す」などと表現するが、関数型プログラミング言語では「式を評価する」という表現も良く使われる[3]

参照透過性

[編集]

参照透過性とは、同じ値を与えたら返り値も必ず同じになるような性質である[1]。参照透過性を持つことは、その関数が状態を持たないことを保証する[4]。状態を持たない数学的な関数は、並列処理を実現するのに適している[4]。関数型プログラミング言語の内で、全ての関数が参照透過性を持つようなものを純粋関数型プログラミング言語という[4]

入出力

[編集]

関数型プログラミングでは、数学的な関数を組み合わせて計算を表現するが、それだけではファイルの読み書きのような外界とのやり取りを要する処理を直接的に表現できない[5]。このような外界とのやり取りを I/O (入出力) と呼ぶ[5]。数学的な計算をするだけ、つまり 1 + 1 のようなプログラム内で完結する処理ならば、入出力を記述できなくても問題ないが、現実的なプログラムにおいてはそうでない[5]

非純粋な関数型プログラミング言語においては、式を評価すると同時に I/O が発生する関数を用意することで入出力を実現する[5]。たとえば、 F# 言語では、printfn "Hi." が評価されると、 () という値が戻ってくると同時に、画面に Hi. と表示される I/O が発生する[5]

Haskell では、評価と同時に I/O が行われる関数は存在しない[5]。たとえば、 putStrLn "Hi." という式が評価されると IO () 型を持つ値が返されるが画面には何も表示されず、この値が Haskell の処理系によって解釈されて初めて画面に Hi. と表示される[5]I/O アクションとは、ファイルの読み書きやディスプレイへの表示などのような I/O を表現する式のことである[5][6]IO a という型は、コンピュータへの指示を表す I/O アクションを表現している[5][7]。ここでの IOモナドと呼ばれるものの一つである[8]

Clean では、一意型を用いて入出力を表す。

手法

[編集]

最初に解の集合となる候補を生成し、それらの要素に対して1つ(もしくは複数)の解にたどり着くまで関数の適用とフィルタリングを繰り返す手法は、関数型プログラミングでよく用いられるパターンである[9]

Haskell では、関数合成の二項演算子を使ってポイントフリースタイルで関数を定義することができる[9]。関数をポイントフリースタイルで定義すると、データより関数に目が行くようになり、どのようにデータが移り変わっていくかではなく、どんな関数を合成して何になっているかということへ意識が向くため、定義が読みやすく簡潔になることがある[9]。関数が複雑になりすぎると、ポイントフリースタイルでは逆に可読性が悪くなることもある[9]

言語

[編集]

関数型プログラミング言語とは、関数型プログラミングを推奨しているプログラミング言語である[1]。略して関数型言語ともいう[1]。全ての関数が参照透過性を持つようなものを、特に純粋関数型プログラミング言語英語版という[4]。そうでないものを非純粋であるという[5]

関数型プログラミング言語の多くは、言語の設計において何らかの形でラムダ計算が関わっている[3]。ラムダ計算はコンピュータの計算をモデル化する体系の一つであり、記号の列を規則に基づいて変換していくことで計算が行われるものである[3]

関数型プログラミング言語
名前 型付け 純粋性 評価戦略 理論的背景
Clean 静的型付け 純粋 遅延評価
Elm 静的型付け 純粋 正格評価
Erlang 動的型付け 非純粋 正格評価
F# 静的型付け 非純粋 正格評価
Haskell[2] 静的型付け[2] 純粋[2] 遅延評価[2] 型付きラムダ計算[3]
Idris 静的型付け 純粋 正格評価 型付きラムダ計算
Lazy K 型なし 純粋 遅延評価 コンビネータ論理
LISP 1.5
Scheme
Common Lisp
Clojure
動的型付け 非純粋 正格評価 型無しラムダ計算[3]
LISPの各種方言[3] 方言による 方言による 方言による
Miranda 静的型付け 純粋 遅延評価
ML
Standard ML
OCaml
静的型付け 非純粋 正格評価
Scala 静的型付け 非純粋 正格評価
Unlambda 型なし 非純粋 正格評価 コンビネータ論理
Lean 静的型付け 純粋 正格評価 型付きラムダ計算

手続き型プログラミングとの比較

[編集]

C 言語JavaJavaScriptPythonRuby などの2017年現在に使われている言語の多くは、手続き型の文法を持っている[10]。そのような言語では、文法として式 (expression) と文 (statement) を持つ[10]。ここでの式は、計算を実行して結果を得るような処理を記述するための文法要素であり、加減乗除や関数呼び出しなどから構成されている[10]。ここでの文は、何らかの動作を行うようにコンピュータへ指示するための文法要素であり、条件分岐の if 文やループの for 文while 文などから構成されている[10]。手続き型の文法では、式で必要な計算を進め、その結果を元にして文でコンピュータ命令を行うという形で、プログラムを記述する[10]。このように、手続き型言語で重要なのは文である[10]

それに対して、関数型言語で重要なのは式である[10]。関数型言語のプログラムはたくさんの式で構成され、プログラムそのものも一つの式である[10]。たとえば、 Haskell では、プログラムの処理の記述において文は使われず、外部の定義を取り込む import 宣言も処理の一部として扱えない[10]。関数型言語におけるプログラムの実行とは、プログラムを表す式の計算を進めて、その結果として値 (value) を得ることである[10]。式を計算することを、評価する (evaluate) という[10]

手続き型言語ではコンピュータへの指示を文として上から順に並べて書くのに対して、関数型言語では数多く定義した細かい式を組み合わせてプログラムを作る[10]。手続き型言語では文が重要であり、関数型言語では式が重要である[11]

式と文の違いとして、型が付いているかどうかというのがある[11]。式は型を持つが、文は型を持たない[11]。プログラム全てが式から構成されていて、強い静的型付けがされているのならば、プログラムの全体が細部まで型付けされることになる[11]。このように細部まで型付けされているようなプログラムは堅固なものになる[11]

歴史

[編集]

1930年代

[編集]

関数型言語の開発において、アロンゾ・チャーチが1932年[注釈 1]と1941年[注釈 2]に発表したラムダ計算の研究ほど基本的で重要な影響を与えたものはない[12]。ラムダ計算は、それが考え出された当時はプログラムを実行するようなコンピュータが存在しなかったためにプログラミング言語として見なされなかったにもかかわらず、今では最初の関数型言語とされている[12]。1989年現在の関数型言語は、そのほとんどがラムダ計算に装飾を加えたものとして見なせる[12]

1960年代

[編集]

1960年にジョン・マッカーシー等が発表した LISP は関数型言語の歴史において重要である[13]。ラムダ計算は LISP の基礎であると言われるが、マッカーシー自身が1978年[注釈 3]に説明したところによると、匿名関数を表現したいというのが最初にあって、その手段としてマッカーシーはチャーチのラムダ計算を選択したに過ぎない[14]

歴史的に言えば、 LISP に続いて関数型プログラミングパラダイムへ刺激を与えたのは、1960年代半ばのピーター・ランディン英語版の成果である[15]。ランディンの成果はハスケル・カリーアロンゾ・チャーチに大きな影響を受けていた[15]。ランディンの初期の論文は、ラムダ計算と、機械および高級言語 (ALGOL 60) との関係について議論している[15]。ランディンは、1964年[注釈 4]に、 SECD マシンと呼ばれる抽象的な機械を使って機械的に式を評価する方法を論じ、1965年[注釈 5]に、ラムダ計算で ALGOL 60 の非自明なサブセットを形式化した[15]。1966年[注釈 6]にランディンが発表した ISWIM(If You See What I Mean の略)という言語(群)は、間違いなく、これらの研究の成果であり、構文意味論において多くの重要なアイデアを含んでいた[15]。 ISWIM は、ランディン本人によれば、「 LISP を、その名前にも表れたリストへのこだわり、手作業のメモリ割り当て、ハードウェアに依存した教育方法、重い括弧、伝統への妥協、から解放しようとする試みとして見ることができる」[15]。関数型言語の歴史において ISWIM は次のような貢献を果たした[16]

  • 構文についての革新[15]
    • 演算子を前置記法で記述するのをやめて中置記法を導入した[15]
    • let 節と where 節を導入して、さらに、関数を順序なく同時に定義でき、相互再帰も可能なようにした[15]
    • 宣言などを記述する構文に、インデントに基づいたオフサイドルールを使用した[15]
  • 意味論についての革新[16]
    • 非常に小さいが表現力があるコア言語を使って、構文的に豊かな言語を定義するという戦略を導入した[15]
    • 等式推論 (equational reasoning) を重視した[15]
    • 関数によるプログラムを実行するための単純な抽象機械としての SECD マシンを導入した[16]

ランディンは「それをどうやって行うか」ではなく「それの望ましい結果とは何か」を表現することに重点を置いており、そして、 ISWIM の宣言的なプログラミング・スタイルは命令的なプログラミング・スタイルよりも優れているというランディンの主張は、今日まで関数型プログラミングの賛同者たちから支持されてきた[17]。その一方で、関数型言語への関心が高まるまでは、さらに10年を要した[17]。その理由の一つは、 ISWIM ライクな言語の実用的な実装がなかったことであり、実のところ、この状況は1980年代になるまで変わらなかった[17]

ケネス・アイバーソンが1962年[注釈 7]に発表した APL は、純粋な関数型プログラミング言語ではないが、その関数型的な部分を取り出したサブセットがラムダ式に頼らずに関数型プログラミングを実現する方法の一例であるという点で、関数型プログラミング言語の歴史を考察する際に言及する価値はある[17]。実際に、アイバーソンが APL を設計した動機は、配列のための代数的なプログラミング言語を開発したいというものであり、アイバーソンのオリジナル版は基本的に関数型的な記法を用いていた[17]。その後の APL では、いくつかの命令型的な機能が追加されている[17]

脚注

[編集]

注釈

[編集]

出典

[編集]

参考文献

[編集]
  • Church, Alonzo (1932年4月), “A Set of Postulates for the Foundation of Logic” (英語), Annals of Mathematics 33 (2): 346, doi:10.2307/1968337, ISSN 0003-486X, JSTOR 1968337, https://jstor.org/stable/1968337 , Wikidata Q55890017
  • Church, Alonzo (1941年) (英語), The Calculi of Lambda Conversion, プリンストン大学出版局 , Wikidata Q105884272
  • Hudak, Paul (1989年9月1日), “Conception, evolution, and application of functional programming languages” (英語), ACM Computing Surveys 21 (3): 359–411, doi:10.1145/72551.72554, ISSN 0360-0300 , Wikidata Q55871443
  • Iverson, Kenneth (1962年12月1日) (英語), A Programming Language, ジョン・ワイリー・アンド・サンズ, ISBN 978-0-471-43014-8, OL 26792153M , Wikidata Q105954505
  • McCarthy, John (1978年), History of LISP, doi:10.1145/800025.808387 , Wikidata Q56048080
  • Landin, Peter (1964年1月1日), “The Mechanical Evaluation of Expressions” (英語), The Computer Journal 6 (4): 308-320, doi:10.1093/COMJNL/6.4.308, ISSN 0010-4620 , Wikidata Q30040385
  • Landin, Peter (1965年), “Correspondence between ALGOL 60 and Church's Lambda-notation” (英語), Communications of the ACM 8, ISSN 0001-0782 , Wikidata Q105941120
  • Landin, Peter (1966年3月1日), “The next 700 programming languages” (英語), Communications of the ACM 9 (3): 157-166, doi:10.1145/365230.365257, ISSN 0001-0782 , Wikidata Q54002422
  • Lipovača, Miran 田中英行, 村主崇行訳 (2012年5月25日), すごいHaskellたのしく学ぼう! (1st (1st printing) ed.), オーム社, ISBN 978-4-274-06885-0 , Wikidata Q105845956
  • 本間雅洋; 類地孝介; 逢坂時響『Haskell入門 関数型プログラミング言語の基礎と実践』(1st (1st printing))技術評論社、2017年10月10日。ISBN 978-4-7741-9237-6 , Wikidata Q105833610

外部リンク

[編集]

関連項目

[編集]