コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

GPUクラスター

出典: フリー百科事典『ウィキペディア(Wikipedia)』
GPUを使用した最初のスーパーコンピュータであるTitan

GPUクラスター: GPU cluster)は、各ノードにグラフィックスプロセッシングユニット(GPU)を搭載したコンピュータ・クラスターである[1]。GPUクラスターでは、汎用グラフィックスプロセッシングユニット(GPGPU)による最新のGPUの計算能力を利用することで、非常に高速な計算を行うことができる。

ハードウェア

[編集]

GPU種類

[編集]

GPUクラスターは、採用するGPUによってヘテロジニアスとホモジニアスの2つに分類することができる。

ヘテロジニアス

主要な独立系ハードウェア企業英語版(例:AMDnVidia)の両方のハードウェアが使用される。同じGPUの異なるモデル(たとえば8800GTと8800GTXの混在)を使用した場合もヘテロジニアスクラスターとみなされる。

ホモジニアス

すべてのGPUが同じハードウェアクラス、メーカー、モデルであること(たとえば数100個の8800GTと同量のメモリで構成されるホモジニアスクラスター)。

GPUの種類によって利用できる機能が異なるため、上記の意味に基づいてGPUクラスターを分類することは、クラスター上でのソフトウェア開発を大きく方向付けることになる。

インターコネクト

[編集]

コンピュータノードとそれぞれのGPUに加えて、ノード間でデータをやり取りするためには、十分な速度のインターコネクト(相互接続)が必要である。インターコネクトの種類は、存在するノードの数に大きく依存する。インターコネクトの例としてはギガビット・イーサネットInfiniBandなどがある。

ソフトウェア

[編集]

多数のGPU搭載マシンを1つのマシンとして動作させるために必要なソフトウェアコンポーネントには、次のものがある。

  1. オペレーティング・システム
  2. 各クラスタノードに搭載された各GPUタイプに対応したGPUドライバ
  3. クラスタリングAPIメッセージパッシングインターフェイス、MPIなど)。
  4. AMAX英語版のVirtualCL(VCL)クラスタ・プラットフォームは、OpenCLのラッパーであり、ほとんどの変更されていないアプリケーションが、すべてのデバイスがローカル・コンピュータ上にあるかのように、クラスタ内の複数のOpenCLデバイスを透過的に利用できる。

アルゴリズムマッピング

[編集]

GPUクラスターで動作するためのアルゴリズムのマッピングは、従来のコンピュータ・クラスターで動作するためのアルゴリズムのマッピングに多少似ている。例: 配列の一部をRAMから分割するのではなく、テクスチャをGPUクラスターのノードに分割する。

ベンダー

[編集]

NVIDIAは、Tesla 20シリーズGPGPUを使用して完全に構成されたGPUクラスターを構築して提供する能力を持つ、専用のTesla Preferred Partner (TPP)のリストを提供している[2]AMAX Information Technologies英語版社、Dell社、Hewlett-Packard社、Silicon Graphics社は、GPUクラスターとシステムの完全なラインナップを提供する数少ない企業である。

参照項目

[編集]

脚注

[編集]
  1. ^ Kindratenko, Volodymyr V.; Enos, Jeremy J.; Shi, Guochun; Showerman, Michael T.; Arnold, Galen W.; Stone, John E.; Phillips, James C.; Hwu, Wen-mei (2009). “GPU clusters for high-performance computing”. 2009 IEEE International Conference on Cluster Computing and Workshops (New Orleans, LA, USA: IEEE): 1–8. doi:10.1109/CLUSTR.2009.5289128. ISBN 978-1-4244-5011-4. http://ieeexplore.ieee.org/document/5289128/. 
  2. ^ GPU Computing Partners”. Nvidia. 2019年7月1日時点のオリジナルよりアーカイブ。2021年4月11日閲覧。

外部リンク

[編集]