ndゲーム
表示
ndゲームとは、三目並べ(○×ゲーム、ティクタクトー)を一般化したゲームの総称である[1][2][3]。d次元空間における一辺のマス目がn個(総マス目数がnd個)の超立方体の盤面で、2人のプレイヤーでプレイする[1][2][4][5]。プレイヤーが交互に自分の石(○または×)をマス目に置き、先に自分の石をいずれかの方向にn個並べた方が勝ちとなる。ただし、どちらかが勝ちとなる前にnd個の全てのマス目が埋まった場合は引き分けとなる[4]。
一般の三目並べはnが3、dが2であり、これを(3, 2)ゲームと表す[4]。(重力なしの)立体四目並べは(4, 3)ゲームとなる[4]。
(n > 0, 0)ゲームや(1, 1)ゲームは、マス目が1個しかない(n0 = 1、11 = 1)ため、先手必勝となることは自明である。d = 1、n > 1のゲームは、相手の駒が一次元のラインを塞いでしまうため、両プレイヤーが最善手を打つと必ず引き分けになる[5]。
(n, d)ゲームにおいて、勝利となる石の並び(d個繋がった並び)は((n + 2)d − nd)/2本存在する[2][6]。
脚注
[編集]- ^ a b “Mathllaneous”. December 16, 2016閲覧。
- ^ a b c Beck, József (2008-03-20) (英語). Combinatorial Games: Tic-Tac-Toe Theory. Cambridge University Press. ISBN 9780521461009
- ^ Tichy, Robert F.; Schlickewei, Hans Peter; Schmidt, Klaus D. (2008-07-10) (英語). Diophantine Approximation: Festschrift for Wolfgang Schmidt. Springer. ISBN 9783211742808
- ^ a b c d Golomb, Solomon. “Hypercube Tic-Tac-Toe”. April 29, 2016時点のオリジナルよりアーカイブ。December 16, 2016閲覧。
- ^ a b Shih, Davis. “A Scientific Study: k-dimensional Tic-Tac-Toe”. December 16, 2016閲覧。
- ^ Epstein, Richard A. (2012-12-28) (英語). The Theory of Gambling and Statistical Logic. Academic Press. ISBN 9780123978707