ルーシー・ジョアン・スレーター
表示
ルーシー・ジョアン・スレーター(Lucy Joan Slater、1922年1月5日 - 2008年6月6日)は、イギリスの数学者。専門は特殊関数。
主な業績
[編集]→「ロジャーズ=ラマヌジャン恒等式」も参照
代表的な論文
[編集]- Slater, L. J. (1951). A new proof of Rogers's transformations of infinite series. Proceedings of the London Mathematical Society, 2(1), 460-475.
- Slater, L. J. (1952). "Further Identities of the Rogers‐Ramanujan Type". Proceedings of the London Mathematical Society. 2 (1): 147–167.
- Slater, L. J. (1955). "Integrals for asymptotic expansions of hypergeometric functions". Proc. Amer. Math. Soc. 6 (2): 226–231.
- Slater, L. J., & Lakin, A. (1956). Two proofs of the summation theorem. Proceedings of the Edinburgh Mathematical Society, 9(3), 116-121.
著書
[編集]- Slater, Lucy Joan (1960), Confluent hypergeometric functions, Cambridge, UK: en:Cambridge University Press, MR 0107026
- Slater, Lucy Joan (1966), Generalized hypergeometric functions, Cambridge, UK: en:Cambridge University Press, ISBN 978-0-521-06483-5, MR 0201688
出典
[編集]- ^ Weisstein, Eric W. "Jackson-Slater Identity." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Jackson-SlaterIdentity.html
- ^ Mc Laughlin, J., Sills, A. V., & Zimmer, P. (2008). Rogers-Ramanujan-Slater Type Identities. the electronic journal of combinatorics, 1000, 15-31.
- ^ Sills, A. V. (2007). Identities of the Rogers–Ramanujan–Slater type. International Journal of Number Theory, 3(02), 293-323.
- ^ McLaughlin, J., & Sills, A. V. (2008). Ramanujan–Slater type identities related to the moduli 18 and 24. en:Journal of Mathematical Analysis and Applications, 344(2), 765-777.
- ^ McLaughlin, J., & Sills, A. V. (2008). Combinatorics of Ramanujan-Slater type identities. In Combinatorial Number Theory: Proceedings of the Integers Conference 2007' (p. 125).
- ^ Andrews, G. E., Knopfmacher, A., Paule, P., & Prodinger, H. (2001). -Engel series expansions and Slater's identities. Quaestiones Mathematicae, 24(3), 403-416.
- ^ Hikami, K., & Kirillov, A. (2006). Hypergeometric generating function of 𝐿-function, Slater’s identities, and quantum invariant. St. Petersburg Mathematical Journal, 17(1), 143-156.