レイノルズ平均ナビエ-ストークス方程式(英: Reynolds-averaged Navier-Stokes equation, 略称: RANS)とは、
時間平均化
[1]
された流体の運動方程式である。
オズボーン・レイノルズが提唱したレイノルズ分解(英語版)が方程式の前提にあり、レイノルズ分解によって流れの瞬間物理量は時間平均値と変動量に分けられる
[2]。
RANS方程式は主に乱流を記述するために用いられる。乱流特性に関する知識に基づく近似を用いることで、ナビエ-ストークス方程式の近似時間平均解を与えることができる。
定常過程における非圧縮性ニュートン流体のRANS方程式は直交座標系においてアインシュタインの縮約記法を用いて次のように表される。
この方程式の左辺は、平均流量の不安定さと平均流による対流に起因する流体要素の平均運動量の変化を表す。平均物体力、平均圧力場に起因する等方性応力、粘性応力、変動する速度場に起因するレイノルズ応力(英語版)と呼ばれる見かけの応力の項と釣り合う。
非線形のレイノルズ応力項は、RANS方程式を解くために追加のモデリングを必要とし、 それは多くの異なる乱流モデルを創出する。時間平均演算子はレイノルズ演算子(英語版)である。
ある瞬間のナビエ-ストークス方程式からRANS方程式を導出するのに必要な基本的ツールは、レイノルズ分解である。レイノルズ分解とは流れの成分(例えば流速など)を平均値()と変動量()に分ける操作である。
この平均操作には特性があり、その一つに変動量の平均値は0 というものがある。
この操作によりとなる。
ここでは位置ベクトル。
いくつかの文献
[3]
では(はベクトルを表す際に用いられることがあるため)の代わりにと表記することがある。この場合変動量はと表わす。本項では表記はそれぞれ瞬時、平均、変動量を表すものとする。
非圧縮粘性流体のナビエ-ストークス方程式をテンソル表記により表すと次のようになる。
ここでは外力ベクトル。
次にそれぞれの瞬間物理量を平均値と変動量に分けることで、結果以下の式となる。
[4]
連続式 :
から運動方程式は以下のように変形できる。
さらに変形すると以下のようになる。
ここでは歪み速度テンソルで、
である。
最後に、時間での積分により、時間依存性が削除されるため時間微分項を消去する。
- ^
変数の時間平均は以下のように定義される。
時間平均値が一義的に定義されるためには、平均値が初期条件から独立している必要がある。
- ^
レイノルズ分解 CAE用語集| ソフトウェアクレイドル、2018年10月15日閲覧。
- ^
Tennekes, H.; Lumley, J. L. (1992). A first course in turbulence (14. print. ed.). Cambridge, Mass. [u.a.]: MIT Press. ISBN 978-0-262-20019-6.
- ^
それぞれの瞬間物理量を平均値と変動量に分けることで、以下の式となる。
- さらに方程式を時間平均すると次式が得られる
- また、非線形項を以下のように簡略化することができる