利用者:JAlone/圧外傷2
圧外傷(Barotrauma) | |
---|---|
別称 | Squeeze, decompression illness, lung overpressure injury, volutrauma |
マスクの圧迫によりダイバーに軽度の圧外傷が発生。目と周囲の皮膚には点状出血と結膜下出血が見られる。 | |
概要 | |
症状 | 場所による |
原因 | 生体組織とそれ以外(環境、体腔)の間の圧力差 |
合併症 | 動脈ガス塞栓, 気胸, 縦隔気腫 |
分類および外部参照情報 |
圧外傷とは、生体組織とそれ以外(環境、体腔)の間の圧力差による物理的損傷である。[1][2]通常、最初の損傷は、閉じた空間内のガスの膨張または組織を静水圧的に伝わる圧力差によって直接的に引き起こされる張力またはせん断力による組織の過度の伸張によるものである。組織の破裂は、局所組織へのガスの侵入や最初の外傷部位を通る循環によって複雑になる可能性があり、遠隔部位での循環不全を引き起こしたり、ガスの存在により臓器の正常な機能が妨げられたりする可能性がある。この用語は通常、関係する気泡が減圧前にすでに存在している場合に適用される。圧外傷は、圧迫事象と減圧事象の両方で発生する可能性がある。[1][2]
圧外傷は一般に、副鼻腔または中耳の影響、肺の過圧損傷、および外部からの圧迫による損傷として現れる。減圧症(decompression sickness)は周囲の圧力低下によって間接的に引き起こされ、組織の損傷は気泡によって直接的および間接的に引き起こされる。ただし、これらの泡は溶解ガスの過飽和溶液から形成されるため、一般に圧外傷とは呼ばれない。減圧病(decompression illness)とは、減圧症(decompression sickness)と肺の過膨張圧外傷によって引き起こされる動脈ガス塞栓症の2つの病態からなる。[3]これは、周囲気圧の変化に起因するすべての病状を含む、より広い用語の不快感にも分類される。[4]
圧外傷は通常、スキューバダイバー、フリーダイバー、飛行機の乗客が上昇または下降するとき、または潜水チャンバーや与圧航空機などの圧力容器が制御されていない減圧中に、生物が周囲圧力の重大な変化にさらされたときに発生する。衝撃波によって引き起こされることもある。人工呼吸器誘発性肺損傷 (VILI) は、身体が自力で呼吸できないときに使用される機械換気による肺の過剰拡張および拡張収縮の繰り返しによって引き起こされる症状であり、比較的大きな一回換気量と比較的高いピーク圧力を伴う。内部のガスで満たされた空間の過剰膨張による圧外傷は、容量外傷(volutrauma)とも呼ばれる。
代表例
[編集]圧外傷によって損傷を受けやすい臓器や組織の例に以下のものがある
- 中耳と内耳 (barotitis or aerotitis)[1][2][5][6][7][8]
- 副鼻腔([1][2][6] (causing aerosinusitis)
- 肺は外圧に対する内圧の不足、ないし過剰の影響を受ける[1][2][9][10]
- 眼 [1][2](減圧空気層はダイビングマスクまたは水泳ゴーグルの内側にある[11])
- 皮膚[1][2] (空気層ができるダイビングスーツを着用した場合)
- 脳 と 頭蓋骨 (側頭骨破裂に続発する側頭葉損傷)[12]
- 歯 (圧歯痛、つまり気圧に関連した歯の痛みや[13][14][15][16][17] 歯の骨折を引き起こす[18][19][20])
- Pバルブの使用に伴う性器の圧迫とそれによる泌尿器の合併症[21]
- 腸圧外傷は、上昇中に腸内に閉じ込められたガスの過剰膨張によって引き起こされる。
この節の加筆が望まれています。 |
原因
[編集]ダイビング時に気圧外傷を引き起こす圧力差は静水圧の変化である。ダイバーに作用する周囲の圧力には、大気圧と水圧の 2 つの要素がある。水中で 10 メートル (33 フィート) 降下すると、1圧とほぼ同じ量だけ増加する。したがって、水面から水深 10 メートル (33 フィート) まで降下すると、ダイバーにかかる圧力は 2 倍になる。この圧力変化により、ガスが満たされた柔軟な空間の体積が約半分に減る。ボイルの法則は、ガス空間の体積とガス内の圧力との関係を説明する。[1][22]
Barotraumas of descent, also known as compression barotrauma, and squeezes, are caused by preventing the free change of volume of the gas in a closed space in contact with the diver, resulting in a pressure difference between the tissues and the gas space, and the unbalanced force due to this pressure difference causes deformation of the tissues resulting in cell rupture.[2] Barotraumas of ascent, also called decompression barotrauma, are also caused when the free change of volume of the gas in a closed space in contact with the diver is prevented. In this case the pressure difference causes a resultant tension in the surrounding tissues which exceeds their tensile strength.[2]
Patients undergoing hyperbaric oxygen therapy must equalize their ears to avoid barotrauma. High risk of otic barotrauma is associated with unconscious patients.[23] Explosive decompression of a hyperbaric environment can produce severe barotrauma, followed by severe decompression bubble formation and other related injury. The Byford Dolphin incident is an example. Rapid uncontrolled decompression from caissons, airlocks, pressurised aircraft, spacecraft, and pressure suits can have similar effects of decompression barotrauma.
Collapse of a pressure resistant structure such as a submarine, submersible, or atmospheric diving suit can cause rapid compression barotrauma. A rapid change of altitude can cause barotrauma when internal air spaces cannot be equalised. Excessively strenuous efforts to equalise the ears using the Valsalva manoeuvre can overpressurise the middle ear, and can cause middle ear and/or inner ear barotrauma. An explosive blast and explosive decompression create a pressure wave that can induce barotrauma. The difference in pressure between internal organs and the outer surface of the body causes injuries to internal organs that contain gas, such as the lungs, gastrointestinal tract, and ear.[24] Lung injuries can also occur during rapid decompression, although the risk of injury is lower than with explosive decompression.[25][26]
機械換気は肺の圧外傷を引き起こす可能性がある。これは次のいずれかの原因が考えられる[27]
- 肺コンプライアンスが低下した肺を無理に換気しようとする絶対圧力
- せん断力ː特にガス速度の急速な変化に関連するもの
その結果生じる肺胞破裂は、気胸、肺間質性気腫(pulmonary interstitial emphysema,PIE)、縦隔気腫を引き起こす可能性がある。[28]
Barotrauma is a recognised complication of mechanical ventilation that can occur in any patient receiving mechanical ventilation, but is most commonly associated with acute respiratory distress syndrome. It used to be the most common complication of mechanical ventilation but can usually be avoided by limiting tidal volume and plateau pressure to less than 30 to 50 cm water column (30 to 50 mb). As an indicator of transalveolar pressure, which predicts alveolar distention, plateau pressure or peak airway pressure (PAP) may be the most effective predictor of risk, but there is no generally accepted safe pressure at which there is no risk.
圧外傷は人工呼吸器の合併症として知られており、人工呼吸器を受けているすべての患者に発生する可能性があるが、最も一般的には急性呼吸窮迫症候群に関連している。以前は人工呼吸器の最も一般的な合併症だったが、、通常は一回換気量とプラトー圧を30 ~ 50 cmH2O (30 ~ 50 mb) 未満に制限することで回避できる。肺胞の膨張を予測する肺胞内圧の指標として、プラトー圧またはピーク気道内圧 (peak airway pressure,PAP) がリスクを予測する最も効果的な指標である可能性があるが、リスクが存在しない一般に受け入れられている安全な圧力は存在しない。
[28][29] また、胃内容物の誤嚥や、壊死性肺炎や慢性肺疾患などの既存疾患によってもリスクが高まるらしい。喘息重積発作は、気管支閉塞を克服するために比較的高い圧力を必要とするため、特に問題となる。[29]
肺組織が肺胞の過膨張によって損傷を受けると、その損傷は容量外傷(volutrauma)と呼ばれることがあるが、容積と経肺圧は密接に関係している。人工呼吸器による肺損傷は、多くの場合、一回換気量(Vt)の増加と関連している。[30]
同様の原因による他の傷害には、減圧症やアームストロング限界を超えた気圧高度で起きる体液沸騰がある。[31]
病態生理学
[編集]肺過圧損傷
[編集]フリーダイバーは息を吐き出さずに潜水し、安全に上昇することができる。これは、肺内のガスが大気圧で吸入されており、降下中に圧縮され、上昇中に元の体積に戻るためである。スキューバまたは水面から供給されたダイバーが深海で水中呼吸装置からガスを呼吸すると、大気圧よりも高い周囲圧力で肺がガスで満たされる。 10 メートルの肺には、大気圧で含まれるガスの 2 倍の量のガスが含まれている。息を吐き出さずに上昇すると、肺が弾性限界に達して裂け始めるまで、ガスは圧力の低下に合わせて膨張し、生命を脅かす肺損傷を受ける可能性がある。[2][22] 組織の破裂に加えて、過剰な圧力により、破裂部を通って組織内にガスが侵入し、さらに循環系を通ってガスが侵入する可能性がある。[2] 上昇性の肺の圧外傷(Pulmonary barotrauma,PBt)は、肺過膨張症候群(pulmonary over-inflation syndrome,POIS)、肺過圧損傷(lung over-pressure injury,LOP)、肺破裂としても知られている。[22]
結果として起こる損傷には、ガスが到達する場所に応じて、動脈ガス塞栓症、気胸、縦隔気腫、間質気腫、皮下気腫などが含まれる可能性があるが、通常はすべて同時に発生するわけではない。
肺過膨張症候群(POIS)は機械換気で生じることもある。
動脈ガス塞栓症
[編集]Gas in the arterial system can be carried to the blood vessels of the brain and other vital organs. It typically causes transient embolism similar to thromboembolism but of shorter duration. Where damage occurs to the endothelium inflammation develops and symptoms resembling stroke may follow. The bubbles are generally distributed and of various sizes, and usually affect several areas, resulting in an unpredictable variety of neurological deficits. Unconsciousness or other major changes to the state of consciousness within about 10 minutes of surfacing are generally assumed to be gas embolism until proven otherwise. The belief that the gas bubbles themselves formed static emboli which remain in place until recompression has been superseded by the knowledge that the gas emboli are normally transient, and the damage is due to inflammation following endothelial damage and secondary injury from inflammatory mediator upregulation.[32]
Hyperbaric oxygen can cause downregulation of the inflammatory response and resolution of oedema by causing hyperoxic arterial vasoconstriction of the supply to capillary beds. High concentration normobaric oxygen is appropriate as first aid but is not considered definitive treatment even when the symptoms appear to resolve. Relapses are common after discontinuing oxygen without recompression.[32]
気胸
[編集]A pneumothorax is an abnormal collection of air in the pleural space between the lung and the chest wall.[33] Symptoms typically include sudden onset of sharp, one-sided chest pain and shortness of breath.[34] In a minority of cases, a one-way valve is formed by an area of damaged tissue, and the amount of air in the space between chest wall and lungs increases; this is called a tension pneumothorax.[33] This can cause a steadily worsening oxygen shortage and low blood pressure. This leads to a type of shock called obstructive shock, which can be fatal unless reversed.[33] Very rarely, both lungs may be affected by a pneumothorax.[35] It is often called a "collapsed lung", although that term may also refer to atelectasis.[36]
Divers who breathe from an underwater apparatus are supplied with breathing gas at ambient pressure, which results in their lungs containing gas at higher than atmospheric pressure. Divers breathing compressed air (such as when scuba diving) may develop a pneumothorax as a result of barotrauma from ascending just 1メートル (3 ft) while breath-holding with their lungs fully inflated.[37] An additional problem in these cases is that those with other features of decompression sickness are typically treated in a diving chamber with hyperbaric therapy; this can lead to a small pneumothorax rapidly enlarging and causing features of tension.[37]
Diagnosis of a pneumothorax by physical examination alone can be difficult (particularly in smaller pneumothoraces).[38] A chest X-ray, computed tomography (CT) scan, or ultrasound is usually used to confirm its presence.[39] Other conditions that can result in similar symptoms include a hemothorax (buildup of blood in the pleural space), pulmonary embolism, and heart attack.[34][40] A large bulla may look similar on a chest X-ray.[33]
縦隔気腫
[編集]Also known as mediastinal emphysema to divers, pneumomediastinum is a volume of gas inside the mediastinum, the central cavity in the chest between the lungs and surrounding the heart and central blood vessels, usually formed by gas escaping from the lungs as a result of lung rupture.[41]
Gas bubbles escaping from a ruptured lung can travel along the outside of bronchioles and blood vessels until they reach the mediastinal cavity round the heart, major blood vessels, oesophagus and trachea. Gas trapped in the mediastinum expands as the diver continues to rise. The pressure of the trapped gas may cause intense pain inside the rib cage and in the shoulders, and the gas may compress the respiratory passageways, making breathing difficult, and collapse blood vessels. Symptoms range from pain under the sternum, shock, shallow breathing, unconsciousness, respiratory failure, and associated cyanosis. The gas will usually be absorbed by the body over time, and when the symptoms are mild, no treatment may be necessary. Otherwise it may be vented through a hypodermic needle inserted into the mediastinum.[41] Recompression is not usually indicated.
Diagnosis
[編集]Diagnosis of barotrauma generally involves a history of exposure to a source of pressure which could cause the injury suggested by the symptoms. This can vary from the immediately obvious if exposed to explosive blast, or mask squeeze, to rather complex discrimination between possibilities of inner ear decompression sickness and inner ear barotrauma, which may have nearly identical symptoms but different causative mechanism and mutually incompatible treatments. The detailed dive history may be necessary in these cases.[42]
In terms of barotrauma the diagnostic workup for the affected individual could include the following:
Laboratory:[43]
- Creatine kinase (CPK) level: Increases in CPK levels indicate tissue damage associated with decompression sickness.
- Complete blood count (CBC)
- Arterial blood gas (ABG) determination
Imaging:[43]
- Chest radiography can show pneumothorax, and is indicated if there is chest discomfort or breathing difficulty
- Computed tomography (CT) scans and magnetic resonance imaging (MRI) may be indicated when there is severe headache or severe back pain after diving.
- CT is the most sensitive method to evaluate for pneumothorax. It can be used where barotrauma-related pneumothorax is suspected and chest radiograph findings are negative.
- Echocardiography can be used to detect the number and size of gas bubbles in the right side of the heart.
Ear barotrauma
[編集]Barotrauma can affect the external, middle, or inner ear. Middle ear barotrauma (MEBT) is the most common diving injury,[44] being experienced by between 10% and 30% of divers and is due to insufficient equilibration of the middle ear. External ear barotrauma may occur if air is trapped in the external auditory canal. Diagnosis of middle and external ear barotrauma is relatively simple, as the damage is usually visible if severe enough to require intervention.
External auditory canal
[編集]Barotrauma can occur in the external auditory canal if it is blocked by cerumen, exostoses, a tight-fitting diving suit hood or earplugs, which create an airtight, air-filled space between the eardrum and the blockage. On descent, a pressure differential develops between the ambient water and the interior of this space, and this can cause swelling and haemorrhagic blistering of the canal. Treatment is usually analgesics and topical steroid eardrops. Complications may include local infection. This form of barotrauma is usually easily avoided.[44]
Middle ear
[編集]Middle ear barotrauma (MEBT) is an injury caused by a difference in pressure between the external ear canal and the middle ear. It is common in underwater divers and usually occurs when the diver does not equalise sufficiently during descent or, less commonly, on ascent. Failure to equalise may be due to inexperience or eustachian tube dysfunction, which can have many possible causes.[44] Unequalised ambient pressure increase during descent causes a pressure imbalance between the middle ear air space and the external auiditory canal over the eardrum, referred to by divers as ear squeeze, causing inward stretching, serous effusion and haemorrhage, and eventual rupture. During ascent internal over-pressure is normally passively released through the eustachian tube, but if this does not happen the volume expansion of middle ear gas will cause outward bulging, stretching and eventual rupture of the eardrum known to divers as Template:Diving term. This damage causes local pain and hearing loss. Tympanic rupture during a dive can allow water into the middle ear, which can cause severe vertigo from caloric stimulation. This may cause nausea and vomiting underwater, which has a high risk of aspiration of vomit or water, with possible fatal consequences.[44]
この節の加筆が望まれています。 |
Inner ear
[編集]Inner ear barotrauma (IEBt), though much less common than MEBT, shares a similar external cause. Mechanical trauma to the inner ear can lead to varying degrees of conductive and sensorineural hearing loss as well as vertigo. It is also common for conditions affecting the inner ear to result in auditory hypersensitivity.[45] Two possible mechanisms are associated with forced Valsalva manoeuvre. In the one, the Eustachian tube opens in response to the pressure, and a sudden rush of high pressure air into the middle ear causes stapes footplate dislocation and inward rupture of the oval or round window. In the other, the tube remains closed and increased cerebrospinal fluid pressure is transmitted through the cochlea and causes outward rupture of the round window.[44]
Inner ear barotrauma can be difficult to distinguish from Inner ear decompression sickness. Both conditions manifest as cochleovestibular symptoms. The similarity of symptoms makes differential diagnosis difficult, which can delay appropriate treatment or lead to inappropriate treatment.[42]
Nitrogen narcosis, oxygen toxicity, hypercarbia, and hypoxia can cause disturbances in balance or vertigo, but these appear to be central nervous system effects, not directly related to effects on the vestibular organs. High-pressure nervous syndrome during heliox compression is also a central nervous system dysfunction. Inner ear injuries with lasting effects are usually due to round window ruptures, often associated with Valsalva maneuver or inadequate middle ear equalisation.[46] Inner ear barotrauma is often concurrent with middle ear barotrauma as the external causes are generally the same. A variety of injuries may be present, which may include inner ear haemorrhage, intralabyrinthine membrane tear, perilymph fistula, and other pathologies.[47]
Divers who develop cochlear and/or vestibular symptoms during descent to any depth, or during shallow diving in which decompression sickness is unlikely, should be treated with bed rest with head elevation, and should avoid any activity which could cause raised cerebrospinal fluid and intralabyrinthine pressure.[要説明] If there is no improvement in symptoms after 48 hours, exploratory tympanotomy may be considered to investigate possible repair of a labyrinthine window fistula. Recompression therapy is contraindicated in these cases, but is the definitive treatment for inner ear decompression sickness, making an early and accurate differential diagnosis important for deciding on appropriate treatment. IEBt in divers may be difficult to distinguish from inner ear decompression sickness (IEDCS), and as a dive profile alone cannot always eliminate either of the possibilities, the detailed dive history may be necessary to diagnose the more likely injury.[42][47] It is also possible for both to occur at the same time, and IEDCS is more likely to affect the semicircular canals, causing severe vertigo, while IEBt is more likely to affect the cochlea, causing hearing loss, but these are just statistical probabilities, and in reality it can go either way or both.[48] It is accepted practice to assume that if any symptom typical of DCS is present, that the diver has DCS and will be treated accordingly with recompression.[48] Limited case data suggest that recompression does not usually cause harm if the differential diagnosis between IEBt vs IEDCS is doubtful.[47]
Barotrauma | Decompression sickness |
---|---|
Conductive or mixed hearing loss | Sensorineural hearing loss |
Occurs during descent or ascent | Onset during ascent or after surfacing |
Cochlear symptoms (i.e. hearing loss) predominate | Vestibular symptoms (vertigo) predominant; right sided |
History of difficult ear clearing or forced Valsalva manoeuvre | No history of eustachian tube dysfunction |
Low-risk dive profile | Depth >15 m, helium mixtures, helium to nitrogen gas switches, repetitive dives |
Isolated inner ear symptoms, or inner and middle ear on the same sides | Other neurological or dermatological symptoms suggestive of DCS |
Barosinusitis
[編集]The sinuses, like other air-filled cavities, are susceptible to barotrauma if their openings become obstructed. This can result in pain as well as epistaxis (nosebleed). Diagnosis is usually simple provided the history of pressure exposure is mentioned.[49] Barosinusitis, is also called aerosinusitis, sinus squeeze or sinus barotrauma. Sinus barotrauma can be caused by external or internal overpressure. External over-pressure is called sinus squeeze by divers, while internal over-pressure is usually referred to as reverse block or reverse squeeze.
Mask squeeze
[編集]If a diver's mask is not equalized during descent the relative negative internal pressure can produce petechial hemorrhages in the area covered by the mask along with subconjunctival hemorrhages.[49]
Helmet squeeze
[編集]A problem mostly of historical interest, but still relevant to surface supplied divers who dive with the helmet sealed to the dry suit. If the air supply hose is ruptured near or above the surface, the pressure difference between the water around the diver and the air in the hose can be several bar. The non-return valve at the connection to the helmet will prevent backflow if it is working correctly, but if absent, as in the early days of helmet diving, or if it fails, the pressure difference will tend to squeeze the diver into the rigid helmet, which can result in severe trauma. The same effect can result from a large and rapid increase in depth if the air supply is insufficient to keep up with the increase in ambient pressure.[50] On a helmet with a neck dam, the neck dam will allow water to flood the helmet before serious barotrauma can occur. This can happen with helium reclaim helmets if the reclaim regulator system fails, so there is a manual bypass valve, which allows the helmet to be purged so breathing can continue on open circuit.
Pulmonary barotrauma
[編集]Lung over-pressure injury in ambient pressure divers using underwater breathing apparatus is usually caused by breath-holding on ascent. The compressed gas in the lungs expands as the ambient pressure decreases causing the lungs to over-expand and rupture unless the diver allows the gas to escape by maintaining an open airway, as in normal breathing. The lungs do not sense pain when over-expanded giving the diver little warning to prevent the injury. This does not affect breath-hold divers as they bring a lungful of air with them from the surface, which merely re-expands safely to near its original volume on ascent.[2] The problem only arises if a breath of ambient pressure gas is taken at depth, which may then expand on ascent to more than the lung volume. Pulmonary barotrauma may also be caused by explosive decompression of a pressurised aircraft,[51] as occurred on 1 February 2003 to the crew in the Space Shuttle Columbia disaster.
予防
[編集]Diving
[編集]Barotrauma may be caused when diving, either from being crushed, or squeezed, on descent or by stretching and bursting on ascent; both can be avoided by equalising the pressures. A negative, unbalanced pressure is known as a squeeze, crushing eardrums, dry suit, lungs or mask inwards and can be equalised by putting air into the squeezed space. A positive unbalanced pressure expands internal spaces rupturing tissue and can be equalised by letting air out, for example by exhaling. Both may cause barotrauma. There are a variety of techniques depending on the affected area and whether the pressure inequality is a squeeze or an expansion:
- Ears and sinuses: There is a risk of stretched or burst eardrums, usually crushed inwards during descent but sometimes stretched outwards on ascent. The diver can use a variety of methods to let air into or out of the middle ears via the Eustachian tubes. Sometimes swallowing will open the Eustachian tubes and equalise the ears.[52]
- Lungs: There is a risk of pneumothorax, arterial gas embolism, and mediastinal and subcutaneous emphysema during ascent, which are commonly called burst lung or lung overpressure injury by divers. To equalise the lungs, all that is necessary is not to hold the breath during ascent. This risk does not occur when breath-hold diving from the surface, unless the diver breathes from an ambient pressure gas source underwater; breath-hold divers do suffer squeezed lungs on descent, crushing in the chest cavity, but, while uncomfortable, this rarely causes lung injury and returns to normal at the surface. Some people have pathology of the lung which prevent rapid flow of excess air through the passages, which can lead to lung barotrauma even if the breath is not held during rapid depressurisation. These people should not dive as the risk is unacceptably high. Most commercial or military diving medical examinations will look specifically for signs of this pathology.[53]
- Diving mask squeeze enclosing the eyes and nose: The main risk is rupture of the capillaries of the eyes and facial skin because of the negative pressure difference between the gas space and blood pressure,[11] or orbital emphysema from higher pressures.[54][要説明] This can be avoided by breathing air into the mask through the nose. Goggles covering only the eyes are not suitable for deep diving as they cannot be equalised.
- Dry suit squeeze. The main risk is skin getting pinched and bruised by folds of the dry suit when squeezed on descent. Most dry suits can be equalised against squeeze via a manually operated valve fed from a low pressure gas supply. Air must be manually injected during the descent to avoid squeeze and is manually or automatically vented on the ascent to maintain buoyancy control.[55]
- Diving helmet squeeze: Helmet squeeze will occur if the gas supply hose is severed above the diver and the non-return valve at the helmet gas inlet fails or is not fitted. Severity will depend on the hydrostatic pressure difference.[56] A very rapid descent, usually by accident, may exceed the rate at which the breathing gas supply can equalise the pressure causing a temporary squeeze. The introduction of the non-return valve and high maximum gas supply flow rates have all but eliminated both these risks. In helmets fitted with a neck dam, the dam will admit water into the helmet if the internal pressure gets too low; this is less of a problem than helmet squeeze but the diver may drown if the gas supply is not reinstated quickly.[50]:90 This form of barotrauma is avoidable by controlled descent rate, which is standard practice for commercial divers, who will use shotlines, diving stages and wet bells to control descent and ascent rates.
Medical screening
[編集]Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive.[57] In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.[58]
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax.[要説明] In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.[59]
Training
[編集]A significant part of entry level diver training is focused on understanding the risks and procedural avoidance of barotrauma.[60] Professional divers and recreational divers with rescue training are trained in the basic skills of recognizing and first aid management of diving barotrauma.[61][62]
機械換気
[編集]単独の機械的力では、人工呼吸器誘発性肺損傷 (VILI,ventilator-induced lung injury),人工呼吸器関連肺損傷( VALI,ventilator-associated lung injury)を適切に説明できない可能性がある。損傷は、これらの力と肺組織の既存の状態の相互作用によって影響を受け、肺胞構造の動的な変化が関与している可能性がある。
プラトー圧(機械換気時に肺にかかる最大圧力)や呼気終末陽圧(呼気が終わる時の圧力、つまり機械換気時に肺にかかる最低圧力)(positive end-expiratory pressureːPEEP) などの要因だけでは損傷を適切に予測できない。肺組織の周期的変形は VILI の原因に大きな役割を果たしている可能性があり、その寄与因子にはおそらく 1 回換気量、呼気終末陽圧、呼吸数が含まれる。すべてのアプリケーションですべてのリスクを回避することが保証されたプロトコルはない。[30]
胸郭の拡張を抑え、高い気道内圧であっても肺気量の増加を伴わないようにした動物実験モデルでは、肺傷害が生じないことが示され、容量外傷(volutrauma)の概念が提唱された。
さらに、高い PEEP と低い PEEP で換気を行った動物実験では,低 PEEP 群で肺傷害が生じることが示された。この機序として換気に伴って肺胞が拡張─虚脱を繰り返すことが原因と推定されatelectrauma(虚脱性肺損傷、無気肺損傷) の概念が提唱された。さらに、物理的刺激により肺局所での炎症性メディエーターの 産生が亢進して炎症性肺損傷(biotrauma)が生じる。[63][64]
これらの実験結果から、PEEPを高め、プラトー圧を下げ、一回換気量を減らせば肺損傷を防げるとわかったが、当然換気量は低下してしまい呼吸性アシドーシスを招きやすい。
材料力学の疲労と同様、応力振幅が肺損傷に影響する。応力振幅には駆動圧⊿P=プラトー圧 - PEEPが相当する。プラトー圧が上昇してもPEEPも上昇し駆動圧が普遍の場合、死亡率は増加しないことが過去のRCTにより示されている。[65]
Aviation and spaceflight
[編集]Barotrauma caused during airplane journeys is also referred to as airplane ear.[66] The environmental pressure must be prevented from changing rapidly by large amounts.[31] One should include multiple redundant levels of protection against rapid decompression, and systems allowing non-catastrophic failure with sufficient time to allow comfortable equalization of relevant air spaces, particularly the inner ear. A low internal pressure reduces decompression rate and severity in a catastrophic decompression reduces the risk of barotrauma but can increase the risk of decompression sickness and hypoxia in normal operating conditions.
Some measures for protection against rapid decompression specific to airplanes include:[66]
- Yawn and swallow during ascent and descent
- Use the Valsalva maneuver during ascent and descent
- Avoid sleeping during takeoffs and landings
- Use an over the counter nasal spray
- Using filtered earplugs which slowly equalize the pressure against your eardrum during ascents and descents
Outside of a pressurized cabin environment at very high altitudes, a pressure suit is the usual protective measure and is the definitive protection in decompression and exposure to vacuum, but they are expensive, heavy, bulky, restrict mobility, cause thermal regulatory problems, and reduce comfort.[67] To prevent injury from unavoidable pressure changes, similar equalization techniques and relatively slow pressure changes are required, which in turn require patent Eustachian tubes and sinuses.
治療
[編集]Treatment of diving barotrauma depends on the symptoms, which depend on the affected tissues. Lung over-pressure injury may require a chest drain to remove air from the pleura or mediastinum. Recompression with hyperbaric oxygen therapy is the definitive treatment for arterial gas embolism, as the raised pressure reduces bubble size, the reduced blood inert gas concentration may accelerate inert gas solution, and high oxygen partial pressure helps oxygenate tissues compromised by the emboli. Care must be taken when recompressing to avoid a tension pneumothorax.[68] Barotraumas that do not involve gas in the tissues are generally treated according to severity and symptoms for similar trauma from other causes.
この節の加筆が望まれています。 |
First aid
[編集]Pre-hospital care for lung barotrauma includes basic life support of maintaining adequate oxygenation and perfusion, assessment of airway, breathing and circulation, neurological assessment, and managing any immediate life-threatening conditions. High-flow oxygen up to 100% is considered appropriate for diving accidents. Large-bore venous access with isotonic fluid infusion is recommended to maintain blood pressure and pulse.[69]
Emergency treatment
[編集]Pulmonary barotrauma:[70]
- Endotracheal intubation may be required if the airway is unstable or hypoxia persists when breathing 100% oxygen.
- Needle decompression or tube thoracostomy may be necessary to drain a pneumothorax or haemothorax
- Foley catheterization may be necessary for spinal cord AGE if the person is unable to urinate.
- Intravenous hydration may be required to maintain adequate blood pressure.
- Therapeutic recompression is indicated for severe AGE. The diving medical practitioner will need to know the vital signs and relevant symptoms, along with the recent pressure exposure and breathing gas history of the patient. Air transport should be below 1,000フィート (300 m) if possible, or in a pressurized aircraft which should be pressurised to as low an altitude as reasonably possible.
Sinus squeeze and middle ear squeeze are generally treated with decongestants to reduce the pressure differential, with anti-inflammatory medications to treat the pain. For severe pain, narcotic analgesics may be appropriate.[70]
Suit, helmet and mask squeeze are treated as trauma according to symptoms and severity.
Medication
[編集]The primary medications for lung barotrauma are hyperbaric and normobaric oxygen, hyperbaric heliox or nitrox, isotonic fluids, anti-inflammatory medications, decongestants, and analgesics.[71]
この節の加筆が望まれています。 |
Outcomes
[編集]Following barotrauma of the ears or lungs from diving the diver should not dive again until cleared by a diving doctor. After ear injury examination will include a hearing test and a demonstration that the middle ear can be autoinflated. Recovery can take weeks to months.[72]
Epidemiology
[編集]An estimate of in the order of 1000 dive injuries per year occur in the United States and Canada. Many of these involve barotrauma, with nearly 50% of reported injuries involving middle ear barotrauma. Diving injuries tend to correlate with trait anxiety and a tendency to panic, lack of experience, advancing age and reduction in fitness, alcohol usage, obesity, asthma, chronic sinusitis and otitis.[73]
この節の加筆が望まれています。 |
Barotrauma in other animals
[編集]Whales and dolphins develop severely disabling barotrauma when exposed to excessive pressure changes induced by navy sonar, oil industry airguns, explosives, undersea earthquakes and volcanic eruptions.[要出典] Injury and mortality of fish, marine mammals, including sea otters, seals, dolphins and whales, and birds by underwater explosions has been recorded in several studies.[74]
It has been claimed that bats can suffer fatal barotrauma in the low pressure zones behind the blades of wind turbines due to their more fragile mammalian lung structure in comparison with the more robust avian lungs, which are less affected by pressure change.[75][76] The claims that have been made that bats can be killed by lung barotrauma when flying in low-pressure regions close to operating wind-turbine blades, have been supported by reports of measurements of the pressures around the turbine blades.[77] The diagnosis and contribution of barotrauma to bat deaths near wind turbine blades have been disputed by other research comparing dead bats found near wind turbines with bats killed by impact with buildings in areas with no turbines.[78]
浮き袋の過剰拡張
[編集]浮き袋が孤立した魚は、釣りで水面に上がったときに浮上時の気圧外傷を受けやすくなる。浮き袋は浮力を制御する器官であり、血液中の溶液から抽出されたガスで満たされており、通常は逆のプロセスによって除去される。ガスが吸収されるよりも早く魚が水柱内に引き上げられると、ガスは膀胱がその弾性限界まで伸びるまで膨張し、破裂する可能性がある。↵気圧外傷は直接的に致命傷となるか、魚を無力化して捕食されやすくなる可能性がある。浮上後すぐに引き上げたときと同じ深さに戻せば、岩礁魚は回復することができる。 NOAA の科学者は、岩礁魚を素早く深海に戻すSeaqualizerを開発した。[79] この装置は、キャッチアンドリリースされた岩礁魚の生存率を高める可能性がある
関連項目
[編集]脚注
[編集]- ^ a b c d e f g h US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. (2006). オリジナルの2 May 2008時点におけるアーカイブ。 26 May 2008閲覧。
- ^ a b c d e f g h i j k l Brubakk, A.O.; Neuman, T.S. (2003). Bennett and Elliott's physiology and medicine of diving (5th Rev. ed.). United States: Saunders Ltd.. pp. 800. ISBN 978-0-7020-2571-6
- ^ “減圧病 Decompression Illness (Seminar) The Lancet, Jan 8, 2011 早朝カンファランス”. 西伊豆健育会病院. 2025年1月1日閲覧。
- ^ James, P.B. (October 1993). “Dysbarism: the medical problems from high and low atmospheric pressure”. Journal of the Royal College of Physicians of London 27 (4): 367–74. PMC 5396710. PMID 8289154 .
- ^ Reinhart, Richard O. (1996). Basic Flight Physiology. McGraw-Hill Professional. ISBN 978-0-07-052223-7
- ^ a b Fitzpatrick, D.T.; Franck, B.A.; Mason, K.T.; Shannon, S.G. (1999). “Risk factors for symptomatic otic and sinus barotrauma in a multiplace hyperbaric chamber”. Undersea and Hyperbaric Medicine 26 (4): 243–7. PMID 10642071. オリジナルの11 August 2011時点におけるアーカイブ。 26 May 2008閲覧。.
- ^ Fiesseler, F.W.; Silverman, M.E.; Riggs, R.L.; Szucs, P.A. (2006). “Indication for hyperbaric oxygen treatment as a predictor of tympanostomy tube placement”. Undersea and Hyperbaric Medicine 33 (4): 231–5. PMID 17004409. オリジナルの3 February 2011時点におけるアーカイブ。 26 May 2008閲覧。.
- ^ Klokker, M.; Vesterhauge, S.; Jansen, E.C. (November 2005). “Pressure-equalizing earplugs do not prevent barotrauma on descent from 8000 ft cabin altitude”. Aviation, Space, and Environmental Medicine 76 (11): 1079–82. PMID 16313146. オリジナルの3 February 2019時点におけるアーカイブ。 5 June 2008閲覧。.
- ^ Broome, J.R.; Smith, D.J. (November 1992). “Pneumothorax as a complication of recompression therapy for cerebral arterial gas embolism”. Undersea Biomedical Research 19 (6): 447–55. PMID 1304671. オリジナルの3 February 2011時点におけるアーカイブ。 26 May 2008閲覧。.
- ^ Nicol, E.; Davies, G.; Jayakumar, P.; Green, N.D. (April 2007). “Pneumopericardium and pneumomediastinum in a passenger on a commercial flight”. Aviation, Space, and Environmental Medicine 78 (4): 435–9. PMID 17484349. オリジナルの3 February 2019時点におけるアーカイブ。 5 June 2008閲覧。.
- ^ a b Butler, F.K.; Gurney, N. (2001). “Orbital hemorrhage following face-mask barotrauma”. Undersea and Hyperbaric Medicine 28 (1): 31–4. PMID 11732882. オリジナルの11 August 2011時点におけるアーカイブ。 7 July 2008閲覧。.
- ^ Cortes, Maria D.P.; Longridge, Neil S.; Lepawsky, Michael; Nugent, Robert A. (May 2005). “Barotrauma Presenting as Temporal Lobe Injury Secondary to Temporal Bone Rupture”. American Journal of Neuroradiology 26 (5): 1218–1219. PMC 8158631. PMID 15891187. オリジナルの27 September 2011時点におけるアーカイブ。 30 May 2008閲覧。.
- ^ Robichaud, R.; McNally, M.E. (January 2005). “Barodontalgia as a differential diagnosis: symptoms and findings”. Journal of the Canadian Dental Association 71 (1): 39–42. PMID 15649340. オリジナルの29 August 2017時点におけるアーカイブ。 19 July 2008閲覧。.
- ^ Rauch, J.W. (1985). “Barodontalgia—dental pain related to ambient pressure change”. Gen Dent 33 (4): 313–5. PMID 2863194.
- ^ Zadik, Y. (August 2006). “Barodontalgia due to odontogenic inflammation in the jawbone”. Aviation, Space, and Environmental Medicine 77 (8): 864–6. PMID 16909883. オリジナルの20 December 2019時点におけるアーカイブ。 16 July 2008閲覧。.
- ^ Zadik, Y.; Chapnik, L.; Goldstein, L. (June 2007). “In-flight barodontalgia: analysis of 29 cases in military aircrew”. Aviation, Space, and Environmental Medicine 78 (6): 593–6. PMID 17571660. オリジナルの20 December 2019時点におけるアーカイブ。 16 July 2008閲覧。.
- ^ Zadik, Yehuda (April 2009). “Barodontalgia”. Journal of Endodontics 35 (4): 481–5. doi:10.1016/j.joen.2008.12.004. PMID 19345791.
- ^ Zadik, Y.; Einy, S.; Pokroy, R.; Bar Dayan, Y.; Goldstein, L. (June 2006). “Dental Fractures on Acute Exposure to High Altitude”. Aviation, Space, and Environmental Medicine 77 (6): 654–7. PMID 16780246. オリジナルの27 March 2020時点におけるアーカイブ。 17 July 2008閲覧。.
- ^ Zadik, Yehuda (January 2009). “Aviation dentistry: current concepts and practice”. British Dental Journal 206 (1): 11–6. doi:10.1038/sj.bdj.2008.1121. PMID 19132029. オリジナルの25 October 2012時点におけるアーカイブ。 2 June 2009閲覧。.
- ^ Zadik, Yehuda; Drucker, Scott (September 2011). “Diving dentistry: a review of the dental implications of scuba diving”. Australian Dental Journal 56 (3): 265–71. doi:10.1111/j.1834-7819.2011.01340.x. PMID 21884141.
- ^ Harris, Richard (December 2009). “Genitourinary infection and barotrauma as complications of 'P-valve' use in drysuit divers”. Diving and Hyperbaric Medicine 39 (4): 210–2. PMID 22752741. オリジナルの26 May 2013時点におけるアーカイブ。 5 April 2013閲覧。.
- ^ a b c “Mechanism of Injury for Pulmonary Over-Inflation Syndrome”. DAN Medical Frequently Asked Questions. Diver's Alert Network. 18 November 2018時点のオリジナルよりアーカイブ。17 January 2017閲覧。
- ^ Lehm, Jan P.; Bennett, Michael H. (2003). “Predictors of middle ear barotrauma associated with hyperbaric oxygen therapy”. South Pacific Underwater Medicine Society Journal 33: 127–133. オリジナルの22 July 2009時点におけるアーカイブ。 .
- ^ Torkki, Markus; Koljonen, Virve; Sillanpää1, Kirsi; Tukiainen, Erkki; Pyörälä, Sari; Kemppainen, Esko; Kalske, Juha; Arajärvi, Eero et al. (August 2006). “Triage in a Bomb Disaster with 166 Casualties”. European Journal of Trauma 32 (4): 374–80. doi:10.1007/s00068-006-6039-8.
- ^ Williams, Kenneth Gabriel (1959). The New Frontier: Man's Survival in the Sky. Thomas
- ^ Bason, R.; Yacavone, D.W. (May 1992). “Loss of cabin pressurization in U.S. Naval aircraft: 1969–90”. Aviation, Space, and Environmental Medicine 63 (5): 341–5. PMID 1599378.
- ^ Parker, J.C.; Hernandez, L.A.; Peevy, K.J. (1993). “Mechanisms of ventilator-induced lung injury”. Crit Care Med 21 (1): 131–43. doi:10.1097/00003246-199301000-00024. PMID 8420720.
- ^ a b Soo Hoo, Guy W. (31 December 2015). Mosenifar, Zab. ed. “Barotrauma and Mechanical Ventilation”. Drugs and Diseases – Clinical Procedures (Medscape). オリジナルの10 July 2019時点におけるアーカイブ。 16 January 2017閲覧。.
- ^ a b Haake, Ronald; Schlichtig, Robert; Ulstad, David R.; Henschen, Ross R. (April 1987). “Barotrauma: Pathophysiology, Risk Factors, and Prevention”. Chest 91 (4): 608–613. doi:10.1378/chest.91.4.608. PMID 3549176.
- ^ a b Albaiceta, G.M.; Blanch, L (2011). “Beyond volutrauma in ARDS: the critical role of lung tissue deformation.”. Crit Care 15 (2): 304. doi:10.1186/cc10052. PMC 3219320. PMID 21489320 .
- ^ a b Norfleet, W.T. (2008). “Decompression-Related Disorders: Decompression Sickness, Arterial Gas Embolism, and Ebullism Syndrome”. In Barratt, M.R.; Pool, S.L.. Principles of Clinical Medicine for Space Flight. Springer, New York, NY.. pp. 223–246. doi:10.1007/978-0-387-68164-1_11. ISBN 978-0-387-98842-9
- ^ a b Walker, J. R. III; Murphy-Lavoie, Heather M. (20 December 2019). Diving Gas Embolism. StatPearls. PMID 29493946. オリジナルの17 March 2021時点におけるアーカイブ。 29 March 2020閲覧。.
- ^ a b c d Bintcliffe, O; Maskell, N. (May 2014). “Spontaneous pneumothorax”. BMJ 348: g2928. doi:10.1136/bmj.g2928. PMID 24812003.
- ^ a b “What Are the Signs and Symptoms of Pleurisy and Other Pleural Disorders”. www.nhlbi.nih.gov (21 September 2011). 8 October 2016時点のオリジナルよりアーカイブ。31 October 2016閲覧。
- ^ Morjaria, J.B.; Lakshminarayana, U.B.; Liu-Shiu-Cheong, P.; Kastelik, J.A. (November 2014). “Pneumothorax: a tale of pain or spontaneity”. Therapeutic Advances in Chronic Disease 5 (6): 269–273. doi:10.1177/2040622314551549. PMC 4205574. PMID 25364493 .
- ^ Orenstein, D.M. (2004) (英語). Cystic Fibrosis: A Guide for Patient and Family. Lippincott Williams & Wilkins. p. 62. ISBN 9780781741521. オリジナルの31 October 2016時点におけるアーカイブ。
- ^ a b “Arterial gas embolism and pulmonary barotrauma”. Bennett and Elliott's physiology and medicine of diving (5th Rev ed.). United States: Saunders. (2003). pp. 558–61. ISBN 978-0-7020-2571-6
- ^ Yarmus, L.; Feller-Kopman, D. (April 2012). “Pneumothorax in the critically ill patient”. Chest 141 (4): 1098–1105. doi:10.1378/chest.11-1691. PMID 22474153.
- ^ Chen, L.; Zhang, Z. (August 2015). “Bedside ultrasonography for diagnosis of pneumothorax”. Quantitative Imaging in Medicine and Surgery 5 (4): 618–623. doi:10.3978/j.issn.2223-4292.2015.05.04. PMC 4559988. PMID 26435925 .
- ^ Peters, J.R.; Egan, D.; Mick, N.W. (2006). Nadel, E.S.. ed. Blueprints Emergency Medicine. Lippincott Williams & Wilkins. p. 44. ISBN 9781405104616. オリジナルの1 November 2016時点におけるアーカイブ。
- ^ a b “Mediastinal emphysema”. www.britannica.com. Encyclopedia Britannica. 28 September 2022閲覧。
- ^ a b c Lindfors, O.H.; Räisänen-Sokolowski, A.K.; Hirvonen, T.P.; Sinkkonen, S.T. (20 December 2021). “Inner ear barotrauma and inner ear decompression sickness: a systematic review on differential diagnostics”. Diving and Hyperbaric Medicine 51 (4): 328–337. doi:10.28920/dhm51.4.328-337. PMC 8923696. PMID 34897597 .
- ^ a b Kaplan, Joseph. “Barotrauma Workup: Laboratory Studies, Imaging Studies, Other Tests”. emedicine.medscape.com. 23 August 2017時点のオリジナルよりアーカイブ。15 January 2017閲覧。
- ^ a b c d e f “Diving related otological injuries”. www1.racgp.org.au. 1 December 2021時点のオリジナルよりアーカイブ。25 July 2022閲覧。 Reprinted from AJGP vol 49, no 8, August 2020 The Royal Australian College of General Practitioners 2020
- ^ Marx, John (2010). Rosen's emergency medicine: concepts and clinical practice (7th ed.). Philadelphia, PA: Mosby/Elsevier. p. 1906. ISBN 978-0-323-05472-0
- ^ Farmer, J.C. Jr. (Jan–Feb 1977). “Diving injuries to the inner ear”. Ann Otol Rhinol Laryngol Suppl 86 (1 Pt 3 Suppl 36): 1–20. doi:10.1177/00034894770861s201. PMID 402882 .
- ^ a b c Elliott, E.J.; Smart, D.R. (December 2014). “The assessment and management of inner ear barotrauma in divers and recommendations for returning to diving”. Diving Hyperb Med. 44 (4): 208–22. PMID 25596834.
- ^ a b “Inner-Ear Barotrauma vs. DCS”. xray-mag.com. X-Ray Magazine (5 November 2021). 26 July 2022時点のオリジナルよりアーカイブ。26 July 2022閲覧。
- ^ a b Marx, John (2010). Rosen's emergency medicine: concepts and clinical practice 7th edition. Philadelphia, PA: Mosby/Elsevier. p. 1907. ISBN 978-0-323-05472-0
- ^ a b Barsky, Steven; Neuman, Tom (2003). Investigating Recreational and Commercial Diving Accidents. Santa Barbara, California: Hammerhead Press. pp. 61, 90. ISBN 978-0-9674305-3-9
- ^ Staff (29 March 2013). “Aircraft Operations at Altitudes Above 25,000 Feet Mean Sea Level or Mach Numbers Greater Than .75”. Advisory Circular 61-107B. U.S. Department of Transportation Federal Aviation Administration. p. 36. 28 January 2017時点のオリジナルよりアーカイブ。13 January 2017閲覧。
- ^ Kay, E. (2000年). “Prevention of middle ear barotrauma”. Doc's Diving Medicine. staff.washington.edu. 16 January 2017時点のオリジナルよりアーカイブ。13 January 2017閲覧。
- ^ “Fitness to Dive. 34th Undersea and Hyperbaric Medical Society Workshop”. UHMS Publication Number 70(WS-WD)5-1-87. Bethesda, Maryland: Undersea and Hyperbaric Medical Society (1987年). 20 August 2008時点のオリジナルよりアーカイブ。13 January 2017閲覧。
- ^ Bolognini, A.; Delehaye, E.; Cau, M.; Cosso, L. (2008). “Barotraumatic orbital emphysema of rhinogenic origin in a breath-hold diver: a case report”. Undersea and Hyperbaric Medicine 35 (3): 163–7. PMID 18619111. オリジナルの15 April 2013時点におけるアーカイブ。 .
- ^ Barsky, Steven M.; Long, Dick; Stinton, Bob (2006). Dry Suit Diving: A Guide to Diving Dry. Ventura, Calif.: Hammerhead Press. ISBN 978-0-9674305-6-0
- ^ “Incidents list”. Incidents database. The Divers Association. p. 22. 18 May 2017閲覧。[リンク切れ]
- ^ Joint Medical Subcommittee of ECHM and EDTC (24 June 2003). Wendling, Jürg; Elliott, David; Nome, Tor (eds.). Fitness to Dive Standards – Guidelines for Medical Assessment of Working Divers (PDF). pftdstandards edtc rev6.doc (Report). European Diving Technology Committee. 2016年8月26日時点のオリジナル (PDF)よりアーカイブ。2017年5月18日閲覧。
- ^ Richardson, Drew. “The RSTC Medical statement and candidate screening model”. South Pacific Underwater Medicine Society (SPUMS) Journal Volume 30 No.4 December 2000. South Pacific Underwater Medicine Society. pp. 210–213. 5 July 2013時点のオリジナルよりアーカイブ。 Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
- ^ Adir, Yochai; Bove, Alfred A. (2016). “Can asthmatic subjects dive?”. European Respiratory Review 25 (140): 214–220. doi:10.1183/16000617.0006-2016. PMC 9487249. PMID 27246598. オリジナルの23 June 2016時点におけるアーカイブ。 10 June 2016閲覧。.
- ^ “Minimum course standard for Open Water Diver training”. World Recreational Scuba Training Council. pp. 8–9 (1 October 2004). 17 October 2016時点のオリジナルよりアーカイブ。16 January 2017閲覧。
- ^ “Diving Regulations 2009”. Occupational Health and Safety Act 85 of 1993 – Regulations and Notices – Government Notice R41. Pretoria: Government Printer. 4 November 2016時点のオリジナルよりアーカイブ。3 November 2016閲覧。
- ^ “International Diver Training Certification: Diver Training Standards, Revision 4”. Diver Training Standards. Malestroit, Brittany: International Diving Schools Association (29 October 2009). 3 March 2016時点のオリジナルよりアーカイブ。6 November 2016閲覧。
- ^ “圧外傷ってなに?どうしておこるの?|人工呼吸中の合併症 | 看護roo![カンゴルー]”. 看護roo! (2018年10月2日). 2025年1月1日閲覧。
- ^ 田坂, 定智 (2017). “急性呼吸窮迫症候群の病態・治療の最前線”. 日本内科学会雑誌 106 (1): 114–119. doi:10.2169/naika.106.114 .
- ^ “肺保護換気戦略の最新知識 ─臨床的なアプローチ─”. Clinical Engineering 30 (8). (2019-7). doi:10.15105/CE.0000000506 .
- ^ a b “Airplane ear-Airplane ear - Symptoms & causes” (英語). Mayo Clinic. 2024年9月24日閲覧。
- ^ Murray, Daniel H.; Pilmanis, Andrew A.; Blue, Rebecca S.; Pattarini, James M; Law, Jennifer; Bayne, C Gresham; Turney, Matthew W.; Clark, Jonathan B (2013). “Pathophysiology, prevention, and treatment of ebullism”. Aviation, Space, and Environmental Medicine 84 (2): 89–96. doi:10.3357/ASEM.3468.2013. PMID 23447845.
- ^ Stephenson, Jeffrey. “Pathophysiology, treatment and aeromedical retrieval of SCUBA – related DCI”. Journal of Military and Veterans' Health 17 (3). ISSN 1835-1271. オリジナルの23 December 2017時点におけるアーカイブ。 13 January 2017閲覧。.
- ^ Kaplan, Joseph. “Barotrauma Treatment & Management”. emedicine.medscape.com. 18 January 2017時点のオリジナルよりアーカイブ。15 January 2017閲覧。
- ^ a b Kaplan, Joseph. “Barotrauma Treatment & Management: Emergency Department Care”. emedicine.medscape.com. 18 January 2017時点のオリジナルよりアーカイブ。15 January 2017閲覧。
- ^ Kaplan, Joseph. “Barotrauma Medication”. emedicine.medscape.com. 11 January 2017時点のオリジナルよりアーカイブ。15 January 2017閲覧。
- ^ “Barotrauma”. Hearing and balance disorders. American Hearing Research Foundation (October 2012). 17 January 2017時点のオリジナルよりアーカイブ。16 January 2017閲覧。
- ^ Battisti, Amanda S.; Haftel, Anthony; Murphy-Lavoie, Heather M. (27 June 2022). Barotrauma. StatPearls Publishing LLC.. PMID 29493973. オリジナルの18 December 2022時点におけるアーカイブ。 30 July 2022閲覧。.
- ^ Danil, K.; St.Leger, J.A. (2011). “Seabird and Dolphin Mortality Associated with Underwater Detonation Exercises”. Marine Technology Society Journal 45 (6): 89–95. doi:10.4031/mtsj.45.6.5. オリジナルの27 December 2016時点におけるアーカイブ。 17 December 2013閲覧。.
- ^ “Wind farms cause thousands of bats to die from trauma”. The Times. (26 August 2008)
- ^ staff (26 August 2008). “Why Wind Turbines Can Mean Death For Bats”. Science news. Science Daily. 26 July 2024時点のオリジナルよりアーカイブ。13 January 2017閲覧。
- ^ Baerwald, Erin F.; D'Amours, Genevieve H.; Klug, Brandon J.; Barclay, Robert M. R. (26 August 2008). “Barotrauma is a significant cause of bat fatalities at wind turbines”. Current Biology 18 (16): R695–R696. Bibcode: 2008CBio...18.R695B. doi:10.1016/j.cub.2008.06.029. OCLC 252616082. PMID 18727900. Lay source includes audio podcast of interview with author.
- ^ Rollins, K.E.; Meyerholz, D.; Johnson, D.; Capparella, A.; Loew, S. (January 2012). “A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury?”. Veterinary Pathology 49 (2): 362–371. doi:10.1177/0300985812436745. PMID 22291071.
- ^ “Saving Rockfish Stocks One Recompression at a Time”. Marine Science Today (5 November 2012). 15 November 2015時点のオリジナルよりアーカイブ。29 August 2015閲覧。
External links
[編集]Template:Consequences of external causes Template:Underwater diving