コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

利用者:GeeKay/sandbox

2014年10月26日までに発見された各年の太陽系外惑星の発見数。

本稿では、複数惑星系の一覧について取り上げる。複数個の惑星を持つ惑星系は特に複数惑星系[1][2][3]英語: Multiple planetary system[1]、Multiplanetary system)または多重惑星系[4][5]と呼ばれる。NASA Exoplanet Archive の統計によると、2024年11月1日時点で太陽系外惑星が確認されている4,314個恒星のうち2個以上の惑星が確認されている複数惑星系は969個である[6]。既知の惑星系内における惑星数の最多記録は太陽系ケプラー90系の8個で、TRAPPIST-1系の7個がこれに次ぐ。

一覧

[編集]

一覧は3個以上の惑星がある事が知られている、もしくは2個の惑星と1個以上の未確認の惑星候補が存在している可能性がある複数惑星系を地球からの距離が近い順に並べている。最も近いのは2個の確実な惑星と1個の未確認の惑星を持つことが知られているプロキシマ・ケンタウリ系である(近い恒星の一覧も参照)。しかし、ほとんどの複数惑星系は地球から非常に遠い位置にあり、一番遠いとされている複数惑星系は13,300光年離れた位置にあるOGLE-2012-BLG-0026L系であるとされている。

恒星の赤経赤緯、距離(ガイア計画[7]による観測などから求められた年周視差より計算)はSIMBADのデータに基づく。視等級は特記しない限り、可視光線で観測されるVバンドでの等級を示すが、それ以外の波長域のバンドによる等級の場合はそのバンド名を括弧付きで付している。

表の色は確認された惑星数を表す
2 3 4 5 6 7 8
主星名
星座
赤経
赤緯
視等級
距離
光年
スペクトル分類
質量
M
有効温度
K
年齢
億年
惑星数 出典
太陽 - - −26.74 0.000016 G2V 1.000 5778 45.7 8 [8]
プロキシマ・ケンタウリ ケンタウルス座  14h 29m 42.9461s −62° 40′ 46.1647″ 11.13 4.247 M5Ve 0.154 2992 48.5 2 (1) [9][10][11][12]
ラランド21185 おおぐま座  11h 03m 20.1948s +35° 58′ 11.5761″ 7.520 8.304 M2V 0.389 3547 80.47 2 (1) [9][13]
ラカーユ9352 みなみのうお座  23h 05m 52.0358s −35° 51′ 11.0552″ 7.39 10.724 M2V 0.479 3672 45.7 2 (1) [9][14]
GJ 1061 とけい座  03h 35m 59.6992s −44° 30′ 45.7308″ 13.07 11.984 M5.5V 0.125 2977 >70 3 [9][15]
くじら座YZ星 くじら座  01h 12m 30.6369s −16° 59′ 56.3580″ 12.074 12.122 M4.0Ve 0.130 3056 50 3 [16]
ルイテン星 こいぬ座  07h 27m 24.4990s +05° 13′ 32.8415″ 9.872 12.348 M3.5V 0.29 3382 >80 2 (2) [17]
ティーガーデン星 おひつじ座  02h 53m 00.8918s +16° 52′ 52.6322″ 15.14 12.497 M7V 0.097 3034 >80 3 [18][19]
ウォルフ1061 へびつかい座  16h 30m 18.0584s −12° 39′ 45.3212″ 10.072 14.050 M3.5V 0.304 3307 3 [9][20]
グリーゼ876 みずがめ座  22h 53m 16.7326s −14° 15′ 49.3041″ 10.192 15.238 M3.5V 0.346 3201 1 - 99 4 [9][21]
エリダヌス座82番星 エリダヌス座  03h 19m 55.6509s −43° 04′ 11.2152″ 4.27 19.704 G6V 0.91 5473 57.6 3 [22][23][24]
グリーゼ581 てんびん座  15h 19m 26.8269s −07° 43′ 20.1895″ 10.560 20.549 M3V 0.295 3500 95 3 (1) [25][26]
グリーゼ892 カシオペヤ座  23h 13m 16.9750s +57° 10′ 06.0838″ 5.570 21.336 K3V 0.81 4700 110 6 [27][28]
グリーゼ667C さそり座  17h 18m 58.8273s −34° 59′ 48.6127″ 10.22 23.623 M1.5V 0.327 3443 61 2 (1) [9][29][30]
おとめ座61番星 おとめ座  13h 18m 24.3140s −18° 18′ 40.2977″ 4.740 27.840 G6.5V 0.94 5556 61 - 66 3 [24][31]
グリーゼ433 うみへび座  11h 35m 26.9478s −32° 32′ 23.8842″ 9.813 29.605 M2V 0.48 3445 3 [32][33][34]
グリーゼ357 うみへび座  09h 36m 01.6372s −21° 39′ 38.8776″ 10.906 30.776 M2.5V 0.342 3505 3 [35]
ルイテン98-59 とびうお座  08h 18m 07.6214s −68° 18′ 46.8054″ 11.685 34.599 M3V 0.273 3415 >8 4 (2) [36]
グリーゼ180 エリダヌス座  04h 53m 49.9799s −17° 46′ 24.3093″ 10.894 38.972 M2V 0.432 3572 50 3 [34][37][38]
グリーゼ806 はくちょう座  20h 45m 04.0992s +44° 29′ 56.6451″ 10.704 39.348 M1.5V 0.413 3600 10 - 80 2 (1) [39]
TRAPPIST-1 みずがめ座  23h 06m 29.3685s −05° 02′ 29.0373″ 18.798 40.66 M7.5e 0.089 2566 76 7 [40][41]
HD 69830 とも座  08h 18m 23.9470s −12° 37′ 55.8172″ 5.95 41.03 G8V 0.863 5394 106 3 [42]
かに座55番星A かに座  08h 52m 35.8111s +28° 19′ 50.9550″ 5.95 41.05 K0IV-V 0.905 5172 86 5 [43][44]
HD 40307 がか座  05h 54m 04.2405s −60° 01′ 24.4930″ 7.147 42.179 K2.5V 0.77 4977 12 4 (2) [45][46]
アンドロメダ座υ星A アンドロメダ座  01h 36m 47.8415s +41° 24′ 19.6514″ 4.10 44 F9V 1.27 6114 31.2 3 [47][48][49]
おおぐま座47番星 おおぐま座  10h 59m 27.9728s +40° 25′ 48.9206″ 5.03 45.3 G1V 1.08 5887 60.3 3 [50][51][52]
おおかみ座ν2 おおかみ座  15h 21m 48.1499s −48° 19′ 03.4699″ 5.65 48.07 G4V 0.876 5664 117 3 [53][54]
LHS 1140 くじら座  00h 44m 59.3309s −15° 16′ 17.5428″ 14.150 48.8 M4.5V 0.184 3096 >50 2 (1) [55]
グリーゼ163 りゅう座  04h 09m 15.6683s −53° 22′ 25.2900″ 11.811 49.36 M3.5V 0.405 3460 50 5 [9][56][57]
さいだん座μ星 さいだん座  17h 44m 08.7031s −51° 50′ 02.5916″ 5.15 50.89 G3IV-V 1.10 5820 63.4 4 [58][59]
グリーゼ676A さいだん座  17h 30m 11.2045s −51° 38′ 13.1303″ 9.585 52.12 M0V 0.631 4014 4 [9][60]
HD 128311 うしかい座  14h 36m 00.5603s +09° 44′ 47.4546″ 7.446 53.28 K3V 0.828 4763 <64 2 (1) [61]
HD 7924 カシオペヤ座  01h 21m 59.1137s +76° 42′ 37.0383″ 7.167 55.46 K0.5V 0.81 5216 30 3 [62][63]
かんむり座ρ星 かんむり座  16h 01m 02.6605s +33° 18′ 12.6395″ 5.39 57.11 G0V 0.95 5817 102 4 [64]
テーブルさん座パイ星 テーブルさん座  05h 37m 09.8868s −80° 20′ 08.8346″ 5.67 59.65 G0V 1.11 6013 34 3 [62][31]
LHS 1678 A ちょうこくぐ座  04h 32m 42.6349s −39° 47′ 12.1500″ 12.482 64.79 M2V 0.345 3490 40 - 90 3 [65]
GJ 3293 エリダヌス座  04h 28m 35.7191s −25° 10′ 09.2979″ 11.962 65.91 M2.5 0.420 3466 4 [66][67]
HD 104067 からす座  11h 59m 10.0088s −20° 21′ 13.6121″ 7.921 66.36 K2V 0.818 4942 48 2 (1) [68][69]
HD 215152 みずがめ座  22h 43m 21.3028s −06° 24′ 02.9530″ 8.13 70.39 K3V 0.756 4803 52.1 4 [70][71]
HD 164922 ヘルクレス座  18h 02m 30.8623s +26° 18′ 46.8050″ 6.99 71.69 G9V 0.874 5293 95.8 4 [72][73]
HD 63433 ふたご座  07h 49m 55.0607s +27° 21′ 47.4574″ 6.91 73.035 G5V 0.99 5688 4.14 3 [74]
HIP 57274 おおぐま座  11h 44m 40.9643s +30° 57′ 33.4481″ 8.96 84.4 K4V 0.73 4640 78.7 3 [75]
HD 142 A ほうおう座  00h 06m 19.1753s −49° 04′ 30.6712″ 5.76 85.39 F7V 1.25 6338 25 3 [76][77]
HD 39194 テーブルさん座  05h 44m 31.9180s −70° 08′ 36.8578″ 8.075 86.23 K0V 0.67 5205 100 3 [78]
LP 791-18 コップ座  11h 02m 45.9546s −16° 24′ 22.2882″ 16.9 86.92 M6V 0.139 2960 5 3 [79][80]
HD 181433 くじゃく座  19h 25m 09.5667s −66° 28′ 07.6770″ 8.38 88.03 K3III-IV 0.84 4909 74 3 [81][82]
HD 134606 ふうちょう座  15h 15m 15.0446s −70° 31′ 10.6449″ 6.854 87.44 G6IV 1.046 5576 73 5 [83]
HD 158259 りゅう座  17h 25m 24.0553s +52° 47′ 26.4699″ 6.47 88.11 G0 1.08 5 (1) [84]
HD 82943 うみへび座  09h 34m 50.7353s −12° 07′ 46.3692″ 6.53 90.31 F9VFe+0.5 1.14 5944 31 2 (1) [81][85]
GJ 3138 くじら座  02h 09m 10.9012s −16° 20′ 22.5293″ 10.877 92.89 M0 0.681 3717 3 [67]
GJ 9827 うお座  23h 27m 04.8377s −01° 17′ 10.5827″ 10.10 96.71 K6V 0.606 4305 60.5 3 [86][87]
K2-239 ろくぶんぎ座  10h 42m 22.6343s +04° 26′ 28.8859″ 14.55 101.51 M3V 0.40 3420 3 [88]
TOI-700 かじき座  06h 28m 23.2285s −65° 34′ 45.5204″ 13.076 101.5 M2V 0.415 3459 >15 4 [89][90]
HR 858 A ろ座  02h 51m 56.2462s −30° 48′ 52.2623″ 6.382 104.3 F6V 1.145 6201 22.8 3 [91]
HD 37124 おうし座  05h 37m 02.4866s +20° 43′ 50.8329″ 7.68 103.4 G4IV-V 0.81 5763 118 3 [62][92]
HD 20781 ろ座  03h 20m 02.9429s −28° 47′ 01.7905″ 8.44 117.3 G9.5V 0.70 5256 4 [93]
ケプラー444A こと座  19h 19m 00.5489s +41° 38′ 04.5824″ 8.86 119.22 K0V 0.754 5046 110 5 [94][95]
HD 141399 うしかい座  15h 46m 53.8132s +46° 59′ 10.5432″ 7.20 120.85 K0 1.09 5602 4 [96][97]
ケプラー42 はくちょう座  19h 28m 52.5689s +44° 37′ 08.9898″ 16.06 (R) 130.8 M4V 0.144 3269 3 [98]
HD 31527 うさぎ座  04h 55m 38.3826s −23° 14′ 30.7616″ 7.484 125.06 G2V 0.96 5898 3 [99]
HD 10180 みずへび座  01h 37m 53.5772s −60° 30′ 41.4821″ 7.32 127.1 G1V 1.062 5911 73 6 (3) [100][101][102][103]
TOI-174A レチクル座  03h 41m 50.3988s −62° 46′ 01.4772″ 9.72 127.5 K4V 0.67 4684 5 [104]
HR 8799 ペガスス座  23h 07m 28.7157s +21° 08′ 03.3108″ 5.953 133.3 F0+VkA5mA5 1.47 7430 0.3 4 [105][106]
HD 27894 レチクル座  04h 20m 47.0461s −59° 24′ 39.0246″ 9.42 142.5 K2V 0.83 4923 69 3 [81][107]
HD 93385 ほ座  10h 46m 15.1159s −41° 27′ 51.7287″ 7.486 140.9 G2/3V 1.04 5977 33 3 [108]
K2-3 しし座  11h 29m 20.3917s −01° 27′ 17.2817″ 12.17 143.4 M1V 0.549 3844 69 3 [109]
HD 204313 やぎ座  21h 28m 12.2061s −21° 43′ 34.5182″ 8.02 156.97 G5V 1.06 5783 43 3 [81][77]
HD 3167 うお座  00h 34m 57.5242s +04° 22′ 53.2841″ 8.97 154.3 K0V 0.837 5261 78 4 [110]
TOI-500 とも座  07h 06m 13.9753s −47° 35′ 13.8721″ 10.59 154.63 K6 4 [111]
HIP 14810 おひつじ座  03h 11m 14.2302s +21° 05′ 50.4940″ 8.50 163.75 G6V 0.98 5535 87 3 [62][112]
HD 133131 A/B てんびん座  15h 03m 35.0865s −27° 50′ 27.5520″ 8.40 167.84 G2V / G2V 0.95 5799 63 3 [113][注 1]
HD 191939 りゅう座  20h 08m 05.7551s +66° 51′ 02.0766″ 8.97 174.45 G9V 0.81 5348 70 6 [114]
HD 109271 A おとめ座  12h 33m 35.5546s −11° 37′ 18.7289″ 8.05 182.13 G3/5V 1.047 5783 73 2 (1) [115]
HD 125612 A おとめ座  14h 20m 53.5177s −17° 28′ 53.4897″ 8.32 188.64 G3V 1.09 5818 31 3 [81][116]
K2-136A おうし座  04h 29m 38.9939s +22° 52′ 57.7935″ 11.20 192.06 K5.5V 0.71 4364 6.25-7.50 3 [117]
HD 184010 こぎつね座  19h 31m 21.6214s +26° 37′ 01.8171″ 5.893 200.17 K0III-IV 1.35 4971 27.6 3 [118]
HD 38677 オリオン座  05h 47m 06.2666s −10° 37′ 48.8272″ 7.98 204.17 F8V 1.21 6196 20.1 4 [119]
TOI-178 ちょうこくしつ座  00h 29m 12.3029s −30° 27′ 13.4669″ 11.95 204.87 K7V 0.650 4316 71 6 [120]
[[]] °

脚注

[編集]

注釈

[編集]
  1. ^ HD 133131 系は HD 133131 A と HD 133131 B の2つの恒星から成る連星系であり、前者には2つの惑星、後者には1つの惑星が周囲を公転していることが知られている。ここでは HD 133131 系全体の総数として惑星を3個持つものとして扱う。

出典

[編集]
  1. ^ a b 井田茂田村元秀生駒大洋関根康人 編『系外惑星の事典』朝倉書店、2016年9月15日、欧文索引 - M頁。ISBN 978-4-254-15021-6 
  2. ^ 太陽系外の複数惑星系における惑星同士の食を初めて発見』(プレスリリース)東京大学大学院、2012年1月5日https://www.s.u-tokyo.ac.jp/ja/press/2012/40.html2020年10月11日閲覧 
  3. ^ コンパクトな複数惑星系は低金属量星の周囲にできやすい”. AstroArts (2018年10月31日). 2020年10月11日閲覧。
  4. ^ 太陽系外惑星、灼熱の巨大惑星、超巨大コアをもつ惑星”. 理科年表オフィシャルサイト. 2023年1月25日閲覧。
  5. ^ 須藤靖 (2019年10月8日). “2019年ノーベル物理学賞は,物理的宇宙論における数々の理論的発見に対してジェームズ・ピーブルズ教授に、 また太陽と似た恒星の周りを公転する太陽系外の惑星の発見に対してミシェル・マイヨール教授とディディエ・ケロー教授の3名が受賞した。”. 日本物理学会. 2020年12月26日閲覧。
  6. ^ Exoplanet and Candidate Statistics”. NASA Exoplanet Archive. IPAC英語版/Caltech. 2024年11月1日閲覧。
  7. ^ Vallenari, A. et al. (2022). “Gaia Data Release 3. Summary of the content and survey properties”. Astronomy & Astrophysics. arXiv:2208.00211. doi:10.1051/0004-6361/202243940 
  8. ^ Williams, D.R. (2004年). “Sun Fact Sheet”. NASA. Goddard Space Flight Center. 2015年10月15日閲覧。
  9. ^ a b c d e f g h i Pineda, J. Sebastian; Youngblood, Allison; France, Kevinl (2021). “The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars”. The Astrophysical Journal 918 (1): 23. arXiv:2106.07656. Bibcode2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. 40. 
  10. ^ Kervella, P.; Thévenin, F.; Lovis, C. (2017). “Proxima's orbit around α Centauri”. Astronomy and Astrophysics 598: L7. arXiv:1611.03495. Bibcode2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. 
  11. ^ Mascareño, A. Suárez; Faria, J. P.; Figueira, P. et al. (2020). “Revisiting Proxima with ESPRESSO”. Astronomy and Astrophysics 639: A77. arXiv:2005.12114. Bibcode2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. 
  12. ^ Faria, J. P.; Suárez Mascareño, A.; Figueira, P. et al. (2022). “A candidate short-period sub-Earth orbiting Proxima Centauri”. Astronomy and Astrophysics (EDP Sciences) 658: A115. arXiv:2202.05188. doi:10.1051/0004-6361/202142337. 
  13. ^ Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J. (2021). “Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate”. The Astronomical Journal 163 (5): 218. arXiv:2107.09087. Bibcode2022AJ....163..218H. doi:10.3847/1538-3881/ac5c47. 
  14. ^ Jeffers, S. V.; Dreizler, S.; Barnes, J. R. et al. (2020). “A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887”. Science 368 (6498): 1477–1481. arXiv:2006.16372. Bibcode2020Sci...368.1477J. doi:10.1126/science.aaz0795. 
  15. ^ Dreizler, S.; Jeffers, S. V.; Rodríguez, E. et al. (2019). “Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061”. Monthly Notices of the Royal Astronomical Society 493 (1): 536. arXiv:1908.04717. Bibcode2020MNRAS.493..536D. doi:10.1093/mnras/staa248. 
  16. ^ Astudillo-Defru, Nicola; Díaz, Rodrigo F.; Bonfils, Xavier et al. (2017). “The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti”. Astronomy and Astrophysics 605: L11. arXiv:1708.03336. Bibcode2017A&A...605L..11A. doi:10.1051/0004-6361/201731581. 
  17. ^ Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C. et al. (2020). “GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec”. Astronomy and Astrophysics 641: A23. arXiv:2006.09403. Bibcode2020A&A...641A..23P. doi:10.1051/0004-6361/202038047. 
  18. ^ Caballero, J. A.; Reiners, Ansgar; Ribas, I. et al. (2019). “The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star”. Astronomy and Astrophysics 627: A49. arXiv:1906.07196. Bibcode2019A&A...627A..49Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. 
  19. ^ Dreizler, S.; Luque, R.; Ribas, I. et al. (2024). “Teegarden's Star revisited: A nearby planetary system with at least three planets”. Astronomy and Astrophysics 684: A117. arXiv:2402.00923. Bibcode2024A&A...684A.117D. doi:10.1051/0004-6361/202348033. 
  20. ^ Wright, D. J; Wittenmyer, R. A; Tinney, C. G et al. (2016). “Three Planets Orbiting Wolf 1061”. The Astrophysical Journal Letters 817 (2): L20. arXiv:1512.05154. Bibcode2016ApJ...817L..20W. doi:10.3847/2041-8205/817/2/L20. 
  21. ^ Moutou, C.; Delfosse, X.; Petit, A. C. et al. (2023). “Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148”. Astronomy and Astrophysics 678: A207. arXiv:2307.11569. Bibcode2023A&A...678A.207M. doi:10.1051/0004-6361/202346813. 
  22. ^ Luck, R. Earle (2018). “Abundances in the Local Region. III. Southern F, G, and K Dwarfs”. The Astronomical Journal 155 (3): 111. Bibcode2018AJ....155..111L. doi:10.3847/1538-3881/aaa9b5. ISSN 0004-6256. 
  23. ^ Pepe, F.; Lovis, C.; Ségransan, D. et al. (2011). “The HARPS search for Earth-like planets in the habitable zone: I – Very low-mass planets around HD20794, HD85512 and HD192310”. Astronomy and Astrophysics 534: A58. arXiv:1108.3447. Bibcode2011A&A...534A..58P. doi:10.1051/0004-6361/201117055. 
  24. ^ a b Cretignier, M.; Dumusque, X.; Aigrain, S.; Pepe, F. (2023). “YARARA V2: Reaching sub-m s−1 precision over a decade using PCA on line-by-line radial velocities”. Astronomy and Astrophysics 678: A2. arXiv:2308.11812. Bibcode2023A&A...678A...2C. doi:10.1051/0004-6361/202347232. 
  25. ^ von Stauffenberg, A.; Trifonov, T.; Quirrenbach, A. et al. (2024). “The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES”. Astronomy and Astrophysics 688 (A112): 21. arXiv:2407.11520. Bibcode2024A&A...688A.112V. doi:10.1051/0004-6361/202449375. ISSN 0004-6361. 
  26. ^ Engle, Scott G.; Guinan, Edward F. (2023). “Living with a Red Dwarf: The Rotation-Age Relationships of M Dwarfs”. The Astrophysical Journal Letters 954 (2): L50. arXiv:2307.01136. Bibcode2023ApJ...954L..50E. doi:10.3847/2041-8213/acf472. 
  27. ^ Seager, Sara; Knapp, Mary; Demory, Brice-Olivier et al. (2021). “HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS”. The Astronomical Journal 161 (3): 15. Bibcode2021AJ....161..117S. doi:10.3847/1538-3881/abcd3d. 117. 
  28. ^ Vogt, Steven S.; Burt; Meschiari, Stefano et al. (2015). “Six Planets Orbiting HD 219134”. The Astrophysical Journal 814: 12. arXiv:1509.07912. Bibcode2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. 
  29. ^ Sloane, Stephen A.; Guinan, Edward F.; Engle, Scott G. (2023). “Super-Earth GJ 667Cc: Age and XUV Irradiances of the Temperate-zone Planet with Potential for Advanced Life”. Research Notes of the AAS 7 (6): 135. Bibcode2023RNAAS...7..135S. doi:10.3847/2515-5172/ace189. ISSN 2515-5172. 
  30. ^ Robertson, Paul; Mahadevan, Suvrath (2014). “Disentangling Planets and Stellar Activity for Gliese 667C”. The Astrophysical Journal 793 (2): L24. arXiv:1409.0021. Bibcode2014ApJ...793L..24R. doi:10.1088/2041-8205/793/2/L24. 
  31. ^ a b Laliotis, Katherine; Burt, Jennifer A.; Mamajek, Eric E. et al. (2023). “Doppler Constraints on Planetary Companions to Nearby Sun-like Stars: An Archival Radial Velocity Survey of Southern Targets for Proposed NASA Direct Imaging Missions”. The Astronomical Journal 165 (4): 176. arXiv:2302.10310. Bibcode2023AJ....165..176L. doi:10.3847/1538-3881/acc067. 
  32. ^ Zechmeister, M.; Kürster, M.; Endl, M. (2009). “The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs”. Astronomy and Astrophysics 505 (2): 859–871. arXiv:0908.0944. Bibcode2009A&A...505..859Z. doi:10.1051/0004-6361/200912479. 
  33. ^ Houdebine, E. R. (2010). “Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars”. Monthly Notices of the Royal Astronomical Society 407 (3): 1657–1673. Bibcode2010MNRAS.407.1657H. doi:10.1111/j.1365-2966.2010.16827.x. 
  34. ^ a b Feng, Fabo; Butler, R. Paul; Shectman, Stephen A. et al. (2020). “Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs”. The Astrophysical Journal Supplement Series 246 (1): 38. arXiv:2001.02577. Bibcode2020ApJS..246...11F. doi:10.3847/1538-4365/ab5e7c. ISSN 1538-4365. 11. 
  35. ^ Luque, R.; Pallé, E.; Kossakowski, D. et al. (2019). “Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization”. Astronomy and Astrophysics 628 (A39): 18. arXiv:1904.12818. Bibcode2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. 
  36. ^ Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y. et al. (2021). “A warm terrestrial planet with half the mass of Venus transiting a nearby star”. Astronomy and Astrophysics 653: 38. arXiv:2108.03323. Bibcode2021A&A...653A..41D. doi:10.1051/0004-6361/202140728. 
  37. ^ Schweitzer, A.; Passegger, V. M.; Cifuentes, C. et al. (2019). “The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars”. Astronomy and Astrophysics 625: 16. arXiv:1904.03231. Bibcode2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. A68. 
  38. ^ Miles, Brittany E.; Shkolnik, Evgenya L. (2017). “HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive”. The Astronomical Journal 154 (2): 67. arXiv:1705.03583. Bibcode2017AJ....154...67M. doi:10.3847/1538-3881/aa71ab. ISSN 1538-3881. 
  39. ^ Palle, E.; Orell-Miquel, J.; Brady, M. et al. (2023). “GJ 806 (TOI-4481): A bright nearby multi-planetary system with a transiting hot, low-density super-Earth”. Astronomy and Astrophysics 678 (A80): 28. arXiv:2301.06873. Bibcode2023A&A...678A..80P. doi:10.1051/0004-6361/202244261. 
  40. ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L. et al. (2021). “Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides”. The Planetary Science Journal 2 (1): 38. arXiv:2010.01074. Bibcode2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. 1. 
  41. ^ Burgasser, Adam J.; Mamajek, Eric E. (2017). “On the Age of the TRAPPIST-1 System”. The Astrophysical Journal 845 (2): 110. arXiv:1706.02018. Bibcode2017ApJ...845..110B. doi:10.3847/1538-4357/aa7fea. ISSN 1538-4357. 
  42. ^ Tanner, Angelle; Boyajian, Tabetha S.; von Braun, Kaspar et al. (2015). “Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt”. The Astrophysical Journal 800 (2): 5. arXiv:1412.5251. Bibcode2015ApJ...800..115T. doi:10.1088/0004-637X/800/2/115. 115. 
  43. ^ von Braun, Kaspar; Tabetha, S. Boyajian; ten Brummelaar, Theo et al. (2011). “55 Cancri: Stellar Astrophysical Parameters, a Planet in the Habitable Zone, and Implications for the Radius of a Transiting Super-Earth”. The Astrophysical Journal 740 (1): 49–54. arXiv:1106.1152. Bibcode2011ApJ...740...49V. doi:10.1088/0004-637X/740/1/49. 
  44. ^ Bourrier, V.; Dumusque, X.; Dorn, C. et al. (2018). “The 55 Cancri system reassessed”. Astronomy and Astrophysics 619: A1. arXiv:1807.04301. Bibcode2018A&A...619A...1B. doi:10.1051/0004-6361/201833154. 
  45. ^ Nordström, B.; Mayor, M.; Andersen, J. et al. (2004). “The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs”. Astronomy and Astrophysics 418: 989–1019. Bibcode2004A&A...418..989N. doi:10.1051/0004-6361:20035959. 
  46. ^ Díaz, R. F.; Ségransan, D.; Udry, S. et al. (2016). “The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles”. Astronomy and Astrophysics 585: A134. arXiv:1510.06446. Bibcode2016A&A...585A.134D. doi:10.1051/0004-6361/201526729. 
  47. ^ Fuhrmann, Klaus; Pfeiffer, Michael J.; Bernkopf, Jan (1998). “F- and G-type stars with planetary companions: upsilon Andromedae, rho (1) Cancri, tau Bootis, 16 Cygni and rho Coronae Borealis”. Astronomy and Astrophysics 336: 942–952. Bibcode1998A&A...336..942F. 
  48. ^ Baines, Ellyn K.; Thomas Armstrong, J.; Clark, James H. et al. (2021). “Angular Diameters and Fundamental Parameters of Forty-four Stars from the Navy Precision Optical Interferometer”. The Astronomical Journal 162 (5): 198. arXiv:2211.09030. Bibcode2021AJ....162..198B. doi:10.3847/1538-3881/ac2431. ISSN 0004-6256. 
  49. ^ Deitrick, R.; Barnes, R.; McArthur, B. et al. (2015). “The Three-dimensional Architecture of the υ Andromedae Planetary System”. The Astrophysical Journal 798 (1): 46. arXiv:1411.1059. Bibcode2015ApJ...798...46D. doi:10.1088/0004-637X/798/1/46. 
  50. ^ Kovtyukh, V. V.; Soubiran, C.; Belik, S. I.; Gorlova, N. I. (2003). “High precision effective temperatures for 181 F-K dwarfs from line-depth ratios”. Astronomy and Astrophysics 411 (3): 559–564. arXiv:astro-ph/0308429. Bibcode2003A&A...411..559K. doi:10.1051/0004-6361:20031378. 
  51. ^ Saffe, C.; Gómez, M.; Chavero, C. (2005). “On the Ages of Exoplanet Host Stars”. Astronomy and Astrophysics 443 (2): 609–626. arXiv:astro-ph/0510092. Bibcode2005A&A...443..609S. doi:10.1051/0004-6361:20053452. 
  52. ^ Gregory, P. C.; Fischer, D. A. (2010). “A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris”. Monthly Notices of the Royal Astronomical Society 403 (2): 731–747. arXiv:1003.5549. Bibcode2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. 
  53. ^ Delrez, Laetitia; Ehrenreich, David; Alibert, Yann et al. (2021). “Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS”. Nature Astronomy 5 (8): 775–787. arXiv:2106.14491. Bibcode2021NatAs...5..775D. doi:10.1038/s41550-021-01381-5. ISSN 2397-3366. 
  54. ^ Ehrenreich, D.; Delrez, L.; Akinsanmi, B. et al. (2023). “A full transit of ν2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS”. Astronomy and Astrophysics 671 (A154): 16. arXiv:2302.01853. Bibcode2023A&A...671A.154E. doi:10.1051/0004-6361/202244790. 
  55. ^ Cadieux, Charles; Plotnykov, Mykhaylo; Doyon, René et al. (2023). “New Mass and Radius Constraints on the LHS 1140 Planets: LHS 1140 b Is either a Temperate Mini-Neptune or a Water World”. The Astrophysical Journal Letters 960 (1): L3. arXiv:2310.15490. Bibcode2024ApJ...960L...3C. doi:10.3847/2041-8213/ad1691. ISSN 2041-8205. 
  56. ^ Linsky, Jeffrey L.; Wood, Brian E.; Youngblood, Allison et al. (2020). “The Relative Emission from Chromospheres and Coronae: Dependence on Spectral Type and Age”. The Astrophysical Journal 902 (1): 15. arXiv:2009.01958. Bibcode2020ApJ...902....3L. doi:10.3847/1538-4357/abb36f. 3. 
  57. ^ Tuomi, M.; Jones, H. R. A.; Butler, R. P.; et al. (27 July 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644v2 [astro-ph.EP]。
  58. ^ Soriano, M.; Vauclair, S. (2009). “New seismic analysis of the exoplanet-host star Mu Arae”. Astronomy and Astrophysics 513: A49. arXiv:0903.5475. Bibcode2010A&A...513A..49S. doi:10.1051/0004-6361/200911862. 
  59. ^ McCarthy, Chris; Butler, R. Paul; Tinney, C. G. et al. (2004). “Multiple Companions to HD 154857 and HD 160691”. The Astrophysical Journal 617 (1): 575–579. arXiv:astro-ph/0409335. Bibcode2004ApJ...617..575M. doi:10.1086/425214. 
  60. ^ Anglada-Escudé, Guillem; Tuomi, Mikko (2012). “A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems”. Astronomy 548: A58. arXiv:1206.7118. Bibcode2012A&A...548A..58A. doi:10.1051/0004-6361/201219910. 
  61. ^ McArthur, Barbara E.; Benedict, G. Fritz; Henry, Gregory W. et al. (2014). “Astrometry, Radial Velocity, and Photometry: The HD 128311 System Remixed with Data from HST, HET, and APT”. The Astrophysical Journal 795 (1): 41. Bibcode2014ApJ...795...41M. doi:10.1088/0004-637X/795/1/41. 
  62. ^ a b c d Bonfanti, A.; Ortolani, S.; Piotto, G.; Nascimbeni, V. (2015). “Revising the ages of planet-hosting stars”. Astronomy and Astrophysics 575: A18. arXiv:1411.4302. Bibcode2015A&A...575A..18B. doi:10.1051/0004-6361/201424951. 
  63. ^ Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan et al. (2015). “Three Super-Earths Orbiting HD 7924”. The Astrophysical Journal 805 (2): 175. arXiv:1504.06629. Bibcode2015ApJ...805..175F. doi:10.1088/0004-637X/805/2/175. 
  64. ^ Brewer, John M.; Zhao, Lily L.; Fischer, Debra A. et al. (2023). “EXPRES IV: Two Additional Planets Orbiting ρ Coronae Borealis Reveal Uncommon System Architecture”. The Astronomical Journal 166 (2): 46. arXiv:2306.06888. Bibcode2023AJ....166...46B. doi:10.3847/1538-3881/acdd6f. 
  65. ^ Silverstein, Michele L.; Barclay, Thomas; Schlieder, Joshua E. et al. (2024). “Validation of a Third Planet in the LHS 1678 System”. The Astronomical Journal 167 (6): 255. arXiv:2403.00110. Bibcode2024AJ....167..255S. doi:10.3847/1538-3881/ad3040. ISSN 0004-6256. 
  66. ^ Astudillo-Defru, Nicola; Bonfils, Xavier; Delfosse, Xavier et al. (2015). “Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543”. Astronomy and Astrophysics 575: A119. arXiv:1411.7048. Bibcode2015A&A...575A.119A. doi:10.1051/0004-6361/201424253. 
  67. ^ a b Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier et al. (2017). “The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293”. Astronomy and Astrophysics 602: A88. arXiv:1703.05386. Bibcode2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. 
  68. ^ Soto, M. G.; Jenkins, J. S. (2018). “Spectroscopic Parameters and atmosphEric ChemIstriEs of Stars (SPECIES). I. Code description and dwarf stars catalogue”. Astronomy and Astrophysics 615: A76. arXiv:1801.09698. Bibcode2018A&A...615A..76S. doi:10.1051/0004-6361/201731533. 
  69. ^ Kane, Stephen R.; Fetherolf, Tara; Li, Zhexing et al. (March 2024). “A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World”. The Astronomical Journal 167 (5): 239. arXiv:2403.17062. Bibcode2024AJ....167..239K. doi:10.3847/1538-3881/ad3820. 
  70. ^ Tsantaki, M.; Sousa, S. G.; Adibekyan, V. Zh. et al. (2013). “Deriving precise parameters for cool solar-type stars. Optimizing the iron line list”. Astronomy and Astrophysics 555: A150. arXiv:1304.6639. Bibcode2013A&A...555A.150T. doi:10.1051/0004-6361/201321103. 
  71. ^ Delisle, J.-B.; Ségransan, D.; Dumusque, X. et al. (2018). “The HARPS search for southern extra-solar planets. XLIII. A compact system of four super-Earth planets orbiting HD 215152”. Astronomy and Astrophysics 614: 9. arXiv:1802.04631. Bibcode2018A&A...614A.133D. doi:10.1051/0004-6361/201732529. A133. 
  72. ^ Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M. et al. (2016). “Three Temperate Neptunes Orbiting Nearby Stars”. The Astrophysical Journal 830 (1): 46. arXiv:1607.00007. Bibcode2016ApJ...830...46F. doi:10.3847/0004-637X/830/1/46. 
  73. ^ Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A. et al. (2021). “The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades”. The Astrophysical Journal Supplement Series 255 (1): 8. arXiv:2105.11583. Bibcode2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. 
  74. ^ Capistrant, Benjamin K.; Soares-Furtado, Melinda; Vanderburg, Andrew et al. (2024). “TESS Hunt for Young and Maturing Exoplanets (THYME). XI. An Earth-sized Planet Orbiting a Nearby, Solar-like Host in the 400 Myr Ursa Major Moving Group”. The Astronomical Journal 167 (2): 18. arXiv:2401.04785. Bibcode2024AJ....167...54C. doi:10.3847/1538-3881/ad1039. 54. 
  75. ^ Fischer, Debra A.; Gaidos, Eric; Howard, Andrew W. et al. (2012). “M2K. II. A Triple-planet System Orbiting HIP 57274”. The Astrophysical Journal 745 (1): 21. arXiv:1109.2926. Bibcode2012ApJ...745...21F. doi:10.1088/0004-637X/745/1/21. 
  76. ^ Ghezzi, L.; Cunha, K.; Smith, V. V. et al. (2010). “Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicity”. The Astrophysical Journal 720 (2): 1290–1302. arXiv:1007.2681. Bibcode2010ApJ...720.1290G. doi:10.1088/0004-637X/720/2/1290. 
  77. ^ a b Feng, Fabo; Butler, R. Paul; Vogt, Steven S. et al. (2022). “3D Selection of 167 Substellar Companions to Nearby Stars”. The Astrophysical Journal Supplement Series 262 (1): 27. arXiv:2208.12720. Bibcode2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. 21. 
  78. ^ Unger, N.; Ségransan, D.; Queloz, D. et al. (2021). “The HARPS search for southern extra-solar planets”. Astronomy and Astrophysics 654: A104. arXiv:2108.10198. Bibcode2021A&A...654A.104U. doi:10.1051/0004-6361/202141351. ISSN 0004-6361. 
  79. ^ Crossfield, Ian J. M.; Waalkes, William; Newton, Elisabeth R. et al. (2019). “A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18”. The Astrophysical Journal Letters 883 (1): L16. arXiv:1906.09267. Bibcode2019ApJ...883L..16C. doi:10.3847/2041-8213/ab3d30. 
  80. ^ Peterson, Merrin S.; Benneke, Björn; Collins, Karen et al. (2023). “A temperate Earth-sized planet with tidal heating transiting an M6 star.”. Nature 617 (7962): 701–705. doi:10.1038/s41586-023-05934-8. hdl:11603/28165. PMID 37198481. https://pubmed.ncbi.nlm.nih.gov/37198481. 
  81. ^ a b c d e Bonfanti, A.; Ortolani, S.; Nascimbeni, V. (2016). “Age consistency between exoplanet hosts and field stars”. Astronomy and Astrophysics 585: 14. arXiv:1511.01744. Bibcode2016A&A...585A...5B. doi:10.1051/0004-6361/201527297. A5. 
  82. ^ Bouchy, François; Mayor, Michel; Lovis, Christophe et al. (2009). “The HARPS Search for Southern Extra-solar Planets. XVII. Super-Earth and Neptune-mass Planets in Multiple Planet Systems HD 47186 and HD 181433”. Astronomy and Astrophysics 496 (2): 527–531. arXiv:0812.1608. Bibcode2009A&A...496..527B. doi:10.1051/0004-6361:200810669. 
  83. ^ Li, Zhexing; Kane, Stephen R.; Brandt, Timothy D. (2024). “Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System”. The Astronomical Journal 167 (4): 155. arXiv:2401.17415. Bibcode2024AJ....167..155L. doi:10.3847/1538-3881/ad2461. 
  84. ^ Hara, N. C.; Bouchy, F.; Stalport, M. et al. (2020). “The SOPHIE search for northern extrasolar planets: XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain”. Astronomy and Astrophysics 636: L6. arXiv:1911.13296. Bibcode2020A&A...636L...6H. doi:10.1051/0004-6361/201937254. ISSN 0004-6361. 
  85. ^ Baluev, Roman V.; Beaugé, Cristian (2014). “Possible solution to the riddle of HD 82943 multiplanet system: The three-planet resonance 1:2:5?”. Monthly Notices of the Royal Astronomical Society 439 (1): 673–689. arXiv:1310.7101. Bibcode2014MNRAS.439..673B. doi:10.1093/mnras/stt2486. 
  86. ^ Bonomo, A. S.; Dumusque, X.; Massa, A et al. (2023). “Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities. No excess of cold Jupiters in small planet systems”. Astronomy and Astrophysics 677: 18. arXiv:2304.05773. Bibcode2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. A33. 
  87. ^ Kosiarek, Molly R.; Berardo, David A.; Crossfield, Ian J. M. et al. (2021). “Physical Parameters of the Multi-Planet Systems HD 106315 and GJ 9827”. The Astronomical Journal 161 (1): 47. arXiv:2009.03398. Bibcode2021AJ....161...47K. doi:10.3847/1538-3881/abca39. 
  88. ^ Diez Alonso, E.; Gonzalez Hernandez, J. I.; Suarez Gomez, S. L. et al. (2018). “Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars”. Monthly Notices of the Royal Astronomical Society: Letters 480 (1): L1. arXiv:1806.01181. Bibcode2018MNRAS.480L...1D. doi:10.1093/mnrasl/sly102. 
  89. ^ Gilbert, Emily A.; Barclay, Thomas; Schlieder, Joshua E. et al. (2020). “The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System”. The Astronomical Journal 160 (3): 116. arXiv:2001.00952. Bibcode2020AJ....160..116G. doi:10.3847/1538-3881/aba4b2. 
  90. ^ Gilbert, Emily A.; Vanderburg, Andrew; Rodriguez, Joseph E. et al. (2023). “A Second Earth-Sized Planet in the Habitable Zone of the M Dwarf, TOI-700”. The Astrophysical Journal Letters 944 (2): L35. arXiv:2301.03617. Bibcode2023ApJ...944L..35G. doi:10.3847/2041-8213/acb599. 
  91. ^ Vanderburg, Andrew; Huang, Chelsea X.; Rodriguez, Joseph E. et al. (2019). “TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858”. The Astrophysical Journal 881 (1): L19. arXiv:1905.05193. Bibcode2019ApJ...881L..19V. doi:10.3847/2041-8213/ab322d. 
  92. ^ Wright, J. T.; Veras, Dimitri; Ford, Eric B. et al. (2011). “The California Planet Survey. III. A Possible 2:1 Resonance in the Exoplanetary Triple System HD 37124”. The Astrophysical Journal 730 (2): 61–145. arXiv:1101.1097. Bibcode2011ApJ...730...93W. doi:10.1088/0004-637X/730/2/93. 
  93. ^ Udry, S.; Dumusque, X.; Lovis, C. et al. (2019). “The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions”. Astronomy and Astrophysics 622: A37. arXiv:1705.05153. Bibcode2019A&A...622A..37U. doi:10.1051/0004-6361/201731173. 
  94. ^ Campante, T. L.; Barclay, T.; Swift, J. J. et al. (2015). “An Ancient Extrasolar System with Five Sub-Earth-size Planets”. The Astrophysical Journal 799 (2). arXiv:1501.06227. Bibcode2015ApJ...799..170C. doi:10.1088/0004-637X/799/2/170. 
  95. ^ Buldgen, G.; Farnir, M.; Pezzotti, C. et al. (2019). “Revisiting Kepler-444. I. Seismic modeling and inversions of stellar structure”. Astronomy and Astrophysics 630: A126. arXiv:1907.10315. Bibcode2019A&A...630A.126B. doi:10.1051/0004-6361/201936126. 
  96. ^ Sousa, S. G.; Adibekyan, V.; Delgado-Mena, E. et al. (2018). “SWEET-Cat updated”. Astronomy and Astrophysics 620: A58. arXiv:1810.08108. Bibcode2018A&A...620A..58S. doi:10.1051/0004-6361/201833350. 
  97. ^ Vogt, Steven S.; Butler, R. Paul; Rivera, Eugenio J. et al. (2014). “A Four-Planet System Orbiting the K0V Star Hd 141399”. The Astrophysical Journal 787 (2): 97. arXiv:1404.7462. Bibcode2014ApJ...787...97V. doi:10.1088/0004-637X/787/2/97. 
  98. ^ Mann, Andrew W.; Dupuy, Trent; Muirhead, Philip S.; Johnson, Marshall (2017). “The Gold Standard: Accurate Stellar and Planetary Parameters for Eight Kepler M Dwarf Systems Enabled by Parallaxes”. The Astronomical Journal 153 (6): 267. arXiv:1705.01545. Bibcode2017AJ....153..267M. doi:10.3847/1538-3881/aa7140. 
  99. ^ Udry, S.; Dumusque, X.; Lovis, C. et al. (2019). “The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions”. Astronomy and Astrophysics 622: 29. Bibcode2019A&A...622A..37U. doi:10.1051/0004-6361/201731173. A37. 
  100. ^ Takeda, Genya; Ford, Eric B.; Sills, Alison et al. (2007). “Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog”. The Astrophysical Journal Supplement Series 168 (2): 297. arXiv:astro-ph/0607235. Bibcode2007ApJS..168..297T. doi:10.1086/509763. 
  101. ^ Sousa, S. G.; Santos, N. C.; Mayor, M. et al. (2007). “Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes”. Astronomy and Astrophysics 487 (1): 373–381. arXiv:0805.4826. Bibcode2008A&A...487..373S. doi:10.1051/0004-6361:200809698. 
  102. ^ Holmberg, J.; Nordström, B.; Andersen, J. (2009). “The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics”. Astronomy and Astrophysics Supplement Series 501 (3): 941–947. arXiv:0811.3982. Bibcode2009A&A...501..941H. doi:10.1051/0004-6361/200811191.  VizieRにて年齢のデータの閲覧が可能
  103. ^ Kane, Stephen R.; Gelino, Dawn M. (2014). “On the Inclination and Habitability of the Hd 10180 System”. The Astrophysical Journal 792 (2): 111. arXiv:1408.4150. Bibcode2014ApJ...792..111K. doi:10.1088/0004-637X/792/2/111. 
  104. ^ Barros, S. C. C.; Demangeon, O. D. S.; Alibert, Y. et al. (2022). “HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries”. Astronomy and Astrophysics 665: 24. arXiv:2209.13345. Bibcode2022A&A...665A.154B. doi:10.1051/0004-6361/202244293. A154. 
  105. ^ Gray, Richard O.; Kaye, Anthony B. (1999). “HR 8799: A link between γ Doradus variables and λ Bootis stars”. The Astronomical Journal 118 (6): 2993–2996. Bibcode1999AJ....118.2993G. doi:10.1086/301134. 
  106. ^ Marois, Christian; Zuckerman, B.; Konopacky, Quinn M.; Macintosh, Bruce (2011). “Images of a fourth planet orbiting HR 8799”. Nature 468 (7327): 1080–1083. arXiv:1011.4918. Bibcode2010Natur.468.1080M. doi:10.1038/nature09684. 
  107. ^ Trifonov, T.; Kürster, M.; Zechmeister, M. et al. (2017). “Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU”. Astronomy and Astrophysics 602: L8. arXiv:1706.00509. Bibcode2017A&A...602L...8T. doi:10.1051/0004-6361/201731044. 
  108. ^ Unger, N.; Ségransan, D.; Queloz, D. et al. (2021). “The HARPS search for southern extra-solar planets XLVI: 12 super-Earths around the solar type stars HD39194, HD93385, HD96700, HD154088, and HD189567”. Astronomy and Astrophysics 654: 19. arXiv:2108.10198. Bibcode2021A&A...654A.104U. doi:10.1051/0004-6361/202141351. A104. 
  109. ^ Diamond-Lowe, Hannah; Kreidberg, Laura; Harman, C. E. et al. (2022). “The K2-3 System Revisited: Testing Photoevaporation and Core-powered Mass Loss with Three Small Planets Spanning the Radius Valley”. The Astronomical Journal 164 (5): 172. arXiv:2207.12755. Bibcode2022AJ....164..172D. doi:10.3847/1538-3881/ac7807. 
  110. ^ Bonomo, A. S.; Dumusque, X.; Massa, A. et al. (2023). “Cold Jupiters and improved masses in 38 Kepler and K2 small-planet systems from 3661 high-precision HARPS-N radial velocities. No excess of cold Jupiters in small-planet systems”. Astronomy and Astrophysics 677 (A33): 18. arXiv:2304.05773. Bibcode2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. 
  111. ^ Serrano, Luisa Maria; Gandolfi, Davide; Mustill, Alexander J. et al. (2022). “A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system”. Nature Astronomy 6: 736-750. arXiv:2204.13573. Bibcode2022NatAs...6..736S. doi:10.1038/s41550-022-01641-y. 
  112. ^ Wright, J. T.; Fischer, D. A.; Ford, Eric B. et al. (2009). “A Third Giant Planet Orbiting HIP 14810”. The Astrophysical Journal Letters 699 (2): L97–L101. arXiv:0906.0567. Bibcode2009ApJ...699L..97W. doi:10.1088/0004-637X/699/2/L97. 
  113. ^ Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S. et al. (2016). “The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B”. The Astronomical Journal 152 (6): 167. arXiv:1608.06216. Bibcode2016AJ....152..167T. doi:10.3847/0004-6256/152/6/167. 
  114. ^ Orell-Miquel, J.; Nowak, G.; Murgas, F. et al. (2023). “HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone”. Astronomy and Astrophysics 669: A40. arXiv:2211.00667. Bibcode2023A&A...669A..40O. doi:10.1051/0004-6361/202244120. 
  115. ^ Lo Curto, G.; Mayor, M.; Benz, W. et al. (2013). “The HARPS search for southern extrasolar planets: XXXVI. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone”. Astronomy and Astrophysics 551: 7. arXiv:1301.2741. Bibcode2013A&A...551A..59L. doi:10.1051/0004-6361/201220415. A59. 
  116. ^ Mugrauer, M.; Neuhäuser, R. (2009). “The multiplicity of exoplanet host stars New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301”. Astronomy and Astrophysics 494 (1): 373–378. arXiv:0812.2561. Bibcode2009A&A...494..373M. doi:10.1051/0004-6361:200810639. 
  117. ^ Ciard, David R.; Crossfield, Ian J. M.; Feinstein, Adina D. et al. (2018). “K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet”. The Astronomical Journal 155 (1): 11. arXiv:1709.10398. Bibcode2018AJ....155...10C. doi:10.3847/1538-3881/aa9921. 101. 
  118. ^ Teng, Huan-Yu; Sato, Bun'ei; Takarada, Takuya et al. (2022). “A trio of giant planets orbiting evolved star HD 184010”. Publications of the Astronomical Society of Japan 74 (6): 1309-1328. arXiv:2209.09426. Bibcode2022PASJ...74.1309T. doi:10.1093/pasj/psac070. 
  119. ^ Staab, D.; Haswell, C. A.; Barnes, J. R. et al. (2020). “A compact multi-planet system around a bright nearby star from the Dispersed Matter Planet Project”. Nature Astronomy 4: 399-407. arXiv:1912.10792. Bibcode2020NatAs...4..399S. doi:10.1038/s41550-019-0974-x. 
  120. ^ Leleu, A.; Alibert, Y.; Hara, N. C. et al. (2021). “Six transiting planets and a chain of Laplace resonances in TOI-178”. Astronomy and Astrophysics 649: A26. arXiv:2101.09260. Bibcode2021A&A...649A..26L. doi:10.1051/0004-6361/202039767. ISSN 0004-6361.