コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

利用者:GeeKay/sandbox

2014年10月26日までに発見された各年の太陽系外惑星の発見数。

本稿では、複数惑星系の一覧について取り上げる。複数個の惑星を持つ惑星系は特に複数惑星系[1][2][3]英語: Multiple planetary system[1]、Multiplanetary system)または多重惑星系[4][5]と呼ばれる。NASA Exoplanet Archive の統計によると、2024年12月1日時点で太陽系外惑星が確認されている4,321個恒星のうち2個以上の惑星が確認されている複数惑星系は969個である[6]。既知の惑星系内における惑星数の最多記録は太陽系ケプラー90系の8個で、TRAPPIST-1系の7個がこれに次ぐ。

一覧

[編集]

一覧は3個以上の惑星がある事が知られている、もしくは2個の惑星と1個以上の未確認の惑星候補が存在している可能性がある複数惑星系を地球からの距離が近い順に並べている。最も近いのは2個の確実な惑星と1個の未確認の惑星を持つことが知られているプロキシマ・ケンタウリ系である(近い恒星の一覧も参照)。しかし、ほとんどの複数惑星系は地球から非常に遠い位置にあり、一番遠いとされている複数惑星系は13,300光年離れた位置にあるOGLE-2012-BLG-0026L系であるとされている。

恒星の赤経赤緯、距離(ガイア計画[7]による観測などから求められた年周視差より計算)はSIMBADのデータに基づく。視等級は特記しない限り、可視光線で観測されるVバンドでの等級を示すが、それ以外の波長域のバンドによる等級の場合はそのバンド名を括弧付きで付している。

表の色は確認された惑星数を表す
2 3 4 5 6 7 8
主星名
星座
赤経
赤緯
視等級
距離
光年
スペクトル分類
質量
M
有効温度
K
年齢
億年
惑星数 出典
太陽 - - −26.74 0.000016 G2V 1.000 5778 45.7 8 [8]
プロキシマ・ケンタウリ ケンタウルス座  14h 29m 42.9461s −62° 40′ 46.1647″ 11.13 4.25 M5Ve 0.154 2992 48.5 2 (1) [9][10][11][12]
ラランド21185 おおぐま座  11h 03m 20.1948s +35° 58′ 11.5761″ 7.520 8.30 M2V 0.389 3547 80.47 2 (1) [9][13]
ラカーユ9352 みなみのうお座  23h 05m 52.0358s −35° 51′ 11.0552″ 7.39 10.72 M2V 0.479 3672 45.7 2 (1) [9][14]
GJ 1061 とけい座  03h 35m 59.6992s −44° 30′ 45.7308″ 13.07 11.98 M5.5V 0.125 2977 >70 3 [9][15]
くじら座YZ星 くじら座  01h 12m 30.6369s −16° 59′ 56.3580″ 12.074 12.12 M4.0Ve 0.130 3056 50 3 [16]
ルイテン星 こいぬ座  07h 27m 24.4990s +05° 13′ 32.8415″ 9.872 12.35 M3.5V 0.29 3382 >80 2 (2) [17]
ティーガーデン星 おひつじ座  02h 53m 00.8918s +16° 52′ 52.6322″ 15.14 12.50 M7V 0.097 3034 >80 3 [18][19]
ウォルフ1061 へびつかい座  16h 30m 18.0584s −12° 39′ 45.3212″ 10.072 14.05 M3.5V 0.304 3307 3 [9][20]
グリーゼ876 みずがめ座  22h 53m 16.7326s −14° 15′ 49.3041″ 10.192 15.24 M3.5V 0.346 3201 1 - 99 4 [9][21]
エリダヌス座82番星 エリダヌス座  03h 19m 55.6509s −43° 04′ 11.2152″ 4.27 19.70 G6V 0.91 5473 57.6 3 [22][23][24]
グリーゼ581 てんびん座  15h 19m 26.8269s −07° 43′ 20.1895″ 10.560 20.55 M3V 0.295 3500 95 3 (1) [25][26]
グリーゼ892 カシオペヤ座  23h 13m 16.9750s +57° 10′ 06.0838″ 5.570 21.34 K3V 0.81 4700 110 6 [27][28]
グリーゼ667C さそり座  17h 18m 58.8273s −34° 59′ 48.6127″ 10.22 23.62 M1.5V 0.327 3443 61 2 (1) [9][29][30]
おとめ座61番星 おとめ座  13h 18m 24.3140s −18° 18′ 40.2977″ 4.740 27.84 G6.5V 0.94 5556 61 - 66 3 [24][31]
グリーゼ433 うみへび座  11h 35m 26.9478s −32° 32′ 23.8842″ 9.813 29.61 M2V 0.48 3445 3 [32][33][34]
グリーゼ367 ほ座  09h 44m 29.8368s −45° 46′ 35.4276″ 9.979 30.72 M1V 0.454 3522 80 3 [35][36]
グリーゼ357 うみへび座  09h 36m 01.6372s −21° 39′ 38.8776″ 10.906 30.78 M2.5V 0.342 3505 3 [37]
けんびきょう座AU星 けんびきょう座  20h 45m 09.5325s −31° 20′ 27.2379″ 8.627 31.68 M1Ve 0.60 3665 0.23 3 (1) [38]
ルイテン98-59 とびうお座  08h 18m 07.6214s −68° 18′ 46.8054″ 11.685 34.60 M3V 0.273 3415 >8 4 (2) [39]
グリーゼ180 エリダヌス座  04h 53m 49.9799s −17° 46′ 24.3093″ 10.894 38.97 M2V 0.432 3572 50 3 [34][40][41]
グリーゼ806 はくちょう座  20h 45m 04.0992s +44° 29′ 56.6451″ 10.704 39.35 M1.5V 0.413 3600 10 - 80 2 (1) [42]
TRAPPIST-1 みずがめ座  23h 06m 29.3685s −05° 02′ 29.0373″ 18.798 40.66 M7.5e 0.089 2566 76 7 [43][44]
HD 69830 とも座  08h 18m 23.9470s −12° 37′ 55.8172″ 5.95 41.03 G8V 0.863 5394 106 3 [45]
かに座55番星A かに座  08h 52m 35.8111s +28° 19′ 50.9550″ 5.95 41.05 K0IV-V 0.905 5172 86 5 [46][47]
HD 40307 がか座  05h 54m 04.2405s −60° 01′ 24.4930″ 7.147 42.18 K2.5V 0.77 4977 12 4 (2) [48][49]
アンドロメダ座υ星A アンドロメダ座  01h 36m 47.8415s +41° 24′ 19.6514″ 4.10 44.00 F9V 1.27 6114 31.2 3 [50][51][52]
おおぐま座47番星 おおぐま座  10h 59m 27.9728s +40° 25′ 48.9206″ 5.03 45.30 G1V 1.08 5887 60.3 3 [53][54][55]
おおかみ座ν2 おおかみ座  15h 21m 48.1499s −48° 19′ 03.4699″ 5.65 48.07 G4V 0.876 5664 117 3 [56][57]
LHS 1140 くじら座  00h 44m 59.3309s −15° 16′ 17.5428″ 14.150 48.80 M4.5V 0.184 3096 >50 2 (1) [58]
グリーゼ163 りゅう座  04h 09m 15.6683s −53° 22′ 25.2900″ 11.811 49.36 M3.5V 0.405 3460 50 5 [9][59][60]
さいだん座μ星 さいだん座  17h 44m 08.7031s −51° 50′ 02.5916″ 5.15 50.89 G3IV-V 1.10 5820 63.4 4 [61][62]
グリーゼ676A さいだん座  17h 30m 11.2045s −51° 38′ 13.03″ 9.585 52.12 M0V 0.631 4014 4 [9][63]
HD 128311 うしかい座  14h 36m 00.5603s +09° 44′ 47.4546″ 7.446 53.28 K3V 0.828 4763 <64 2 (1) [64]
HD 48948 やまねこ座  06h 49m 57.0256s +60° 20′ 07.9606″ 8.58 54.91 K3V 0.686 4593 114.8 3 [65]
HD 7924 カシオペヤ座  01h 21m 59.1137s +76° 42′ 37.0383″ 7.167 55.46 K0.5V 0.81 5216 30 3 [66][67]
かんむり座ρ星 かんむり座  16h 01m 02.6605s +33° 18′ 12.6395″ 5.39 57.11 G0V 0.95 5817 102 4 [68]
HD 153557 ヘルクレス座  16h 57m 53.1786s +47° 22′ 00.0621″ 7.82 58.50 K3V 0.79 3 [69]
テーブルさん座π星 テーブルさん座  05h 37m 09.8868s −80° 20′ 08.8346″ 5.67 59.65 G0V 1.11 6013 34 3 [66][31]
LHS 1678 A ちょうこくぐ座  04h 32m 42.6349s −39° 47′ 12.1500″ 12.482 64.79 M2V 0.345 3490 40 - 90 3 [70]
GJ 3293 エリダヌス座  04h 28m 35.7191s −25° 10′ 09.2979″ 11.962 65.91 M2.5 0.420 3466 4 [71][72]
HD 104067 からす座  11h 59m 10.0088s −20° 21′ 13.6121″ 7.921 66.36 K2V 0.818 4942 48 2 (1) [73][74]
HD 215152 みずがめ座  22h 43m 21.3028s −06° 24′ 02.9530″ 8.13 70.39 K3V 0.756 4803 52.1 4 [75][76]
HD 164922 ヘルクレス座  18h 02m 30.8623s +26° 18′ 46.8050″ 6.99 71.69 G9V 0.874 5293 95.8 4 [77][78]
HD 63433 ふたご座  07h 49m 55.0607s +27° 21′ 47.4574″ 6.91 73.04 G5V 0.99 5688 4.14 3 [79]
TOI-270 がか座  04h 33m 39.7200s −51° 57′ 22.4354″ 12.617 73.31 M3V 0.386 3506 3 [80]
HD 96700 うみへび座  11h 07m 54.4269s −30° 10′ 28.4472″ 6.503 82.79 G0V 0.89 5845 86 3 [81]
HIP 57274 おおぐま座  11h 44m 40.9643s +30° 57′ 33.4481″ 8.96 84.40 K4V 0.73 4640 78.7 3 [82]
HD 142 A ほうおう座  00h 06m 19.1753s −49° 04′ 30.6712″ 5.76 85.39 F7V 1.25 6338 25 3 [83][69]
HD 39194 テーブルさん座  05h 44m 31.9180s −70° 08′ 36.8578″ 8.075 86.23 K0V 0.67 5205 100 3 [84]
LP 791-18 コップ座  11h 02m 45.9546s −16° 24′ 22.2882″ 16.9 86.92 M6V 0.139 2960 5 3 [85][86]
HD 181433 くじゃく座  19h 25m 09.5667s −66° 28′ 07.6770″ 8.38 88.03 K3III-IV 0.84 4909 74 3 [87][88]
HD 134606 ふうちょう座  15h 15m 15.0446s −70° 31′ 10.6449″ 6.854 87.44 G6IV 1.046 5576 73 5 [89]
HD 158259 りゅう座  17h 25m 24.0553s +52° 47′ 26.4699″ 6.47 88.11 G0 1.08 5 (1) [90]
HD 82943 うみへび座  09h 34m 50.7353s −12° 07′ 46.3692″ 6.53 90.31 F9VFe+0.5 1.14 5944 31 2 (1) [87][91]
GJ 3138 くじら座  02h 09m 10.9012s −16° 20′ 22.5293″ 10.877 92.89 M0 0.681 3717 3 [72]
GJ 9827 うお座  23h 27m 04.8377s −01° 17′ 10.5827″ 10.10 96.71 K6V 0.606 4305 60.5 3 [92][93]
TOI-700 かじき座  06h 28m 23.2285s −65° 34′ 45.5204″ 13.076 101.50 M2V 0.415 3459 >15 4 [94][95]
K2-239 ろくぶんぎ座  10h 42m 22.6343s +04° 26′ 28.8859″ 14.55 101.51 M3V 0.40 3420 3 [96]
HD 37124 おうし座  05h 37m 02.4866s +20° 43′ 50.8329″ 7.68 103.18 G4IV-V 0.81 5763 118 3 [66][97]
HR 858 A ろ座  02h 51m 56.2462s −30° 48′ 52.2623″ 6.382 103.40 F6V 1.145 6201 22.8 3 [98]
HD 110067 かみのけ座  12h 39m 21.5037s +20° 01′ 40.0360″ 8.43 105.09 K0V 0.798 5266 81 6 [99]
TOI-431 うさぎ座  05h 33m 04.6005s −26° 43′ 28.2684″ 9.13 106.41 K3+Vk: 0.78 4850 3 [100]
HD 20781 ろ座  03h 20m 02.9429s −28° 47′ 01.7905″ 8.44 117.27 G9.5V 0.70 5256 4 [101]
ケプラー444A こと座  19h 19m 00.5489s +41° 38′ 04.5824″ 8.86 119.22 K0V 0.754 5046 110 5 [102][103]
HD 141399 うしかい座  15h 46m 53.8132s +46° 59′ 10.5432″ 7.20 120.85 K0 1.09 5602 4 [104][105]
HD 31527 うさぎ座  04h 55m 38.3826s −23° 14′ 30.7616″ 7.484 125.06 G2V 0.96 5898 3 [106]
HD 10180 みずへび座  01h 37m 53.5772s −60° 30′ 41.4821″ 7.32 127.10 G1V 1.062 5911 73 6 (3) [107][108][109][110]
TOI-174A レチクル座  03h 41m 50.3988s −62° 46′ 01.4772″ 9.72 127.50 K4V 0.67 4684 5 [111]
ケプラー42 はくちょう座  19h 28m 52.5689s +44° 37′ 08.9898″ 16.7 130.81 M4V 0.144 3269 3 [112]
HR 8799 ペガスス座  23h 07m 28.7157s +21° 08′ 03.3108″ 5.953 133.33 F0+VkA5mA5 1.47 7430 0.3 4 [113][114]
TOI-2076 うしかい座  14h 29m 34.2426s +39° 47′ 25.5433″ 9.14 137.01 K0 0.85 5187 2.04 3 [115]
HD 93385 ほ座  10h 46m 15.1159s −41° 27′ 51.7287″ 7.486 140.89 G2/3V 1.04 5977 33 3 [116]
HD 27894 レチクル座  04h 20m 47.0461s −59° 24′ 39.0246″ 9.42 142.50 K2V 0.83 4923 69 3 [87][117]
K2-3 しし座  11h 29m 20.3917s −01° 27′ 17.2817″ 12.17 143.44 M1V 0.549 3844 69 3 [118]
TOI-500 とも座  07h 06m 13.9753s −47° 35′ 13.8721″ 10.59 154.63 K6V 0.74 4440 50 4 [119]
HD 204313 やぎ座  21h 28m 12.2061s −21° 43′ 34.5182″ 8.02 156.97 G5V 1.06 5783 43 3 [87][69]
HD 3167 うお座  00h 34m 57.5242s +04° 22′ 53.2841″ 8.97 154.31 K0V 0.837 5261 78 4 [120]
TOI-500 とも座  07h 06m 13.9753s −47° 35′ 13.8721″ 10.59 154.63 K6 0.740 4400 50 4 [121]
HIP 14810 おひつじ座  03h 11m 14.2302s +21° 05′ 50.4940″ 8.50 163.75 G6V 0.98 5535 87 3 [66][122]
HD 11506 くじら座  01h 52m 50.5344s −19° 30′ 25.1082″ 7.51 166.97 G0V 1.22 6123 25 3 [69][123]
HD 133131 A/B てんびん座  15h 03m 35.0865s −27° 50′ 27.5520″ 8.40 167.84 G2V / G2V 0.95 5799 63 3 [124][注 1]
HD 191939 りゅう座  20h 08m 05.7551s +66° 51′ 02.0766″ 8.97 174.45 G9V 0.81 5348 70 6 [125]
HD 109271 A おとめ座  12h 33m 35.5546s −11° 37′ 18.7289″ 8.05 182.13 G3/5V 1.047 5783 73 2 (1) [126]
HD 125612 A おとめ座  14h 20m 53.5177s −17° 28′ 53.4897″ 8.32 188.64 G3V 1.09 5818 31 3 [87][127]
TOI-712 かじき座  06h 11m 44.6726s −65° 49′ 33.4990″ 10.84 191.37 K4.5V 0.732 4622 8.3 3 (2) [128]
K2-136A おうし座  04h 29m 38.9939s +22° 52′ 57.7935″ 11.20 192.06 K5.5V 0.71 4364 6.25-7.50 3 [129]
HD 184010 こぎつね座  19h 31m 21.6214s +26° 37′ 01.8171″ 5.893 200.17 K0III-IV 1.35 4971 27.6 3 [130]
HD 38677 オリオン座  05h 47m 06.2666s −10° 37′ 48.8272″ 7.98 204.17 F8V 1.21 6196 20.1 4 [131]
TOI-178 ちょうこくしつ座  00h 29m 12.3029s −30° 27′ 13.4669″ 11.95 204.87 K7V 0.650 4316 71 6 [132]
TOI-411 エリダヌス座  03h 39m 16.7618s −42° 45′ 45.1859″ 8.26 205.15 F7/8V 1.098 6169 25 3 [133]
TOI-663 ろくぶんぎ座  10h 40m 15.9530s −08° 30′ 38.6090″ 13.667 208.55 M1V 0.514 3681 3 [134]
ケプラー37 こと座  18h 56m 14.3076s +44° 31′ 05.3896″ 9.77 208.74 G8V 0.79 5357 76 3 (1) [120]
HD 108236 ケンタウルス座  12h 26m 17.8919s −51° 21′ 46.2166″ 9.24 210.61 G5V 0.867 5660 67 5 [135]
K2-72 みずがめ座  22h 18m 29.2549s −09° 36′ 44.3811″ 15.04 216.94 M2V 0.27 3360 4 [136]
ケプラー138 こと座  19h 21m 31.5680s +43° 17′ 34.6810″ 13.168 218.87 M1V 0.535 3726 >10 3 (1) [137][138]
K2-233 てんびん座  15h 21m 55.1983s −20° 13′ 53.9909″ 10.88 220.80 K3 0.800 4950 3.6 3 [139]
HD 42813 うさぎ座  06h 12m 13.9672s −14° 39′ 00.0619″ 9.47 221.78 K0V 0.89 5289 117 3 [140]
K2-155 おうし座  04h 21m 52.4853s +21° 21′ 12.9379″ 12.806 237.87 K6V 0.65 4258 3 [141]
TOI-1260 おおぐま座  10h 28m 35.0251s +65° 51′ 16.3812″ 11.973 239.42 0.679 4227 67 3 [142]
LP 358-499 おうし座  04h 40m 35.6391s +25° 00′ 36.0481″ 13.996 245.84 M2V 0.461 3655 4 [143][144]
K2-266A ろくぶんぎ座  10h 31m 44.5056s +00° 56′ 15.2691″ 11.808 253.42 K5V 0.686 4285 4 (2) [145]
K2-384 くじら座  01h 21m 59.8551s +00° 45′ 04.4120″ 14.26 266.96 0.33 3623 5 [146]
TOI-561 ろくぶんぎ座  09h 52m 44.5491s +06° 12′ 58.9210″ 10.243 275.60 G9V 0.785 5372 100 4 (1) [147]
TOI-1136 りゅう座  12h 48m 44.3726s +64° 51′ 19.1475″ 9.53 275.85 G5 1.022 5770 7 6 (1) [148]
TOI-763A ケンタウルス座  12h 57m 52.4467s −39° 45′ 27.7076″ 10.28 311.65 0.917 5444 62 2 (1) [149]
ケプラー446 こと座  18h 49m 00.0433s +44° 55′ 15.9779″ 17.504 314.15 M4V 0.22 3359 3 [150]
TOI-1749 りゅう座  18h 50m 57.0648s +64° 25′ 09.1190″ 13.809 324.27 M0V 0.58 3985 >8 3 [151]
K2-229 おとめ座  12h 27m 29.5847s −06° 43′ 18.7670″ 10.98 334.10 K2V 0.837 5185 54 3 [152]
HIP 41378 かに座  08h 26m 27.8491s +10° 04′ 49.3342″ 8.92 345.65 F8 1.19 6320 31 6 (1) [153]
おうし座V1298星 おうし座  04h 05m 19.5910s +20° 09′ 25.5632″ 10.12 352.27 K1 1.095 4970 0.23 4 [154][155]
ケプラー102 こと座  18h 45m 55.8560s +47° 12′ 28.8453″ 12.07 352.54 K3V 0.803 4909 11 5 [120]
TOI-125 みずへび座  01h 34m 22.7341s −66° 40′ 32.9511″ 11.02 359.90 0.871 5282 66 3 (2) [156]
K2-302 みずがめ座  22h 20m 22.7763s −09° 30′ 34.2920″ 17.83 362.12 M4V 0.407 3297 3 [157][158][注 2]
K2-198 おとめ座  13h 15m 22.5217s −06° 27′ 53.6230″ 10.97 363.77 G9 0.799 5213 3 [161]
HD 33142 うさぎ座  05h 07m 35.5414s −13° 59′ 11.3368″ 7.96 394.29 K0III 1.52 5025 3 [162]
ケプラー445 はくちょう座  19h 54m 56.6592s +46° 29′ 54.7936″ 18.19 400.85 M4V 0.334 3219 3 [137]
TOI-451A エリダヌス座  04h 11m 51.9469s −37° 56′ 23.2192″ 10.94 402.70 0.95 5550 1.2 3 [163]
WASP-132 おおかみ座  14h 30m 26.1897s −46° 09′ 33.1234″ 11.938 403.04 K4V 0.789 4686 72 3 [164]
K2-148A くじら座  00h 58m 04.2759s −00° 11′ 35.3616″ 13.627 405.94 K7V 0.650 4079 3 [165]
K2-165 おとめ座  12h 19m 36.0869s +00° 58′ 06.2012″ 11.33 428.11 K0V 0.835 5185 3 [166]
HD 28109 みずへび座  04h 20m 57.1321s −68° 06′ 09.5140″ 9.38 457.41 F8/G0V 1.26 6120 11 3 (1) [167]
ケプラー68 はくちょう座  19h 24m 07.7660s +49° 02′ 24.9283″ 10.08 470.66 G1V 1.057 5847 68.4 4 [120]
K2-381 いて座  19h 12m 06.4612s −21° 00′ 27.5072″ 13.01 476.05 K2V 0.754 4473 3 [146]
XO-2A/B やまねこ座  07h 48m 06.4723s +50° 13′ 32.9206″ 11.138 489.81 G9V / G9V 0.98 5325 71 4 [168][169][注 3]
ケプラー411A はくちょう座  19h 10m 25.3470s +49° 31′ 23.7126″ 12.55 499.37 K3V 0.81 4906 26.9 4 [170]
K2-285 うお座  23h 17m 32.2274s +01° 18′ 01.0747″ 11.75 506.71 K2V 0.830 4975 4 [171]
K2-32 へびつかい座  16h 49m 42.2602s −19° 32′ 34.1514″ 12.31 510.11 G9V 0.856 5275 79 4 [172]
CoRoT-7A いっかくじゅう座  06h 43m 49.4690s −01° 03′ 46.8266″ 11.73 520.38 K0V 0.91 5250 12 - 23 3 [173][174]
ケプラー220 はくちょう座  19h 26m 01.4892s +46° 53′ 44.7832″ 13.201 557.22 K3V 0.65 4591 83.2 4 [170]
TOI-1246 りゅう座  16h 44m 27.9564s +70° 25′ 46.7018″ 11.858 557.83 K 0.87 5151 63 4 [175][176]
ケプラー186 はくちょう座  19h 54m 36.6535s +43° 57′ 18.0259″ 15.290 578.95 M1V 0.544 3755 40 5 [177]
ケプラー398 こと座  19h 25m 52.4830s +40° 20′ 37.8179″ 13.499 578.96 0.72 4557 23.4 3 [170]
K2-37 さそり座  16h 13m 48.2446s −24° 47′ 13.4285″ 12.573 580.48 G3V 0.90 5413 3 [178]
K2-352 はくちょう座  19h 26m 01.4892s +46° 53′ 44.7832″ 13.201 580.91 0.98 5791 3 [179]
K2-58 みずがめ座  22h 15m 17.2365s −14° 02′ 59.3130″ 12.415 593.75 0.890 5413 3 [180]
K2-38 さそり座  16h 00m 08.0581s −23° 11′ 21.3291″ 11.34 621.56 1.054 5705 61 2 (1) [120]
K2-138 みずがめ座  23h 15m 47.7686s −10° 50′ 58.8955″ 12.21 659.74 K1V 0.93 5378 23 6 [181][182]
K2-368 みずがめ座  22h 10m 32.5631s −11° 09′ 58.2803″ 13.536 677.43 K3V 0.746 4663 3 (1) [146]
ケプラー296A こと座  19h 06m 09.6025s +49° 26′ 14.3969″ 16.363 716.23 M2V 0.454 3572 42 5 [177]
ケプラー19 はくちょう座  19h 21m 40.9995s +37° 51′ 06.4373″ 12.04 720.06 F9 0.936 5541 19 3 [120]
ケプラー126 はくちょう座  19h 17m 23.3506s +44° 12′ 30.7092″ 10.566 753.98 F7IV 1.18 6311 33.9 3 [170]
ケプラー454A こと座  19h 09m 54.8466s +38° 13′ 43.9224″ 11.57 762.01 1.03 5687 52.5 3 [120]
ケプラー327 はくちょう座  19h 30m 34.1672s +44° 05′ 15.5638″ 15.756 782.24 M1V 0.57 3920 30.2 3 [170]
ケプラー25A こと座  19h 06m 33.2141s +39° 29′ 16.3587″ 10.623 786.75 F6 1.159 6270 34.5 3 [183]
HAT-P-13 おおぐま座  08h 39m 31.8072s +47° 21′ 07.2738″ 10.42 800.38 G4 1.22 5653 50 2 (1) [184]
ケプラー114 はくちょう座  19h 36m 29.1358s +48° 20′ 58.2917″ 13.803 842.24 M0V 0.71 4660 26.9 3 [170]
ケプラー54 はくちょう座  19h 39m 05.7418s +43° 03′ 22.5998″ 16.282 879.08 M1V 0.48 3760 41.7 3 [170]
WASP-47 みずがめ座  22h 04m 48.7262s −12° 01′ 07.9987″ 11.99 881.27 1.040 5552 4 [185]
ケプラー20A こと座  19h 10m 47.5233s +42° 20′ 19.3014″ 12.630 933.58 G5V 0.929 5495 56 5 (1) [120]
K2-19 おとめ座  11h 39m 50.4803s +00° 36′ 12.8750″ 13.00 976.22 K0V 0.918 5250 >80 3 [186][187]
ケプラー62 こと座  18h 52m 51.0518s +45° 20′ 59.3996″ 13.982 982.13 K2V 0.69 4925 70 5 [188]
ケプラー65 こと座  19h 14m 45.2916s +41° 09′ 04.2102″ 11.115 982.87 F6IV 1.39 6220 33.1 4 [170]
ケプラー100 こと座  19h 25m 32.6433s +41° 59′ 24.9451″ 11.278 1001.16 G8IV 1.10 5884 69.2 4 [170]
ケプラー48 はくちょう座  19h 56m 33.4162s +40° 56′ 56.4969″ 13.331 1010.30 K0V 0.89 5194 31.4 5 [170]
ケプラー49 はくちょう座  19h 29m 10.6952s +40° 35′ 30.4589″ 15.883 1013.95 M1V 0.63 4079 28.8 4 [170]
ケプラー130A こと座  19h 13m 48.1594s +40° 14′ 43.1620″ 12.007 1033.78 G1V 1.02 6012 58.9 3 [170]
ケプラー52 りゅう座  19h 06m 57.1300s +49° 58′ 32.6379″ 15.716 1042.60 M0V 0.66 4242 35.5 3 [170]
K2-183 かに座  08h 20m 01.7183s +14° 01′ 10.0704″ 12.85 1046.01 G7 0.942 5482 3 [166]
ケプラー32 はくちょう座  19h 51m 22.1744s +46° 34′ 27.3906″ 16.360 1053.48 M1V 0.57 3903 26.9 5 [170]
K2-314 てんびん座  15h 12m 59.5618s −16° 43′ 28.1985″ 11.577 1053.92 G8IV/V 1.05 5430 90 3 [189]
K2-187 かに座  08h 50m 05.6682s +23° 11′ 33.3698″ 13.102 1061.02 K0 0.967 5477 4 [166]
K2-268 かに座  08h 54m 50.2862s +11° 50′ 53.7745″ 13.85 1061.43 K1 0.84 5106 5 [179]
K2-219 うお座  00h 51m 22.8637s +08° 52′ 03.5030″ 12.09 1068.07 G3 1.022 5753 3 [166]
ケプラー26 こと座  18h 59m 45.8408s +46° 33′ 59.4377″ 15.982 1110.21 M0V 0.60 4097 29.5 4 [170]
ケプラー197A はくちょう座  19h 40m 54.3399s +50° 33′ 32.4234″ 11.78 1115.67 F5 1.01 6180 53.7 4 [170]
TOI-4504 りゅうこつ座  07h 37m 52.1727s −62° 04′ 41.6706″ 13.364 1116.89 K1V 0.89 5315 100 3 [190]
ケプラー167A はくちょう座  19h 30m 38.0262s +38° 20′ 43.4372″ 14.284 1118.62 K4 0.770 4890 33 4 [191]
ケプラー332 こと座  19h 06m 39.1083s +47° 24′ 49.3884″ 14.243 1140.25 0.80 5008 28.2 3 [170]
ケプラー81 はくちょう座  19h 34m 32.8685s +42° 49′ 29.7620″ 15.536 1149.17 M0V 0.69 4385 36.3 3 [170]
ケプラー127 こと座  19h 00m 45.5887s +46° 01′ 40.6936″ 11.627 1155.15 G0 1.37 6225 26.3 3 [170]
K2-299 みずがめ座  22h 05m 06.5341s −14° 07′ 18.0114″ 13.12 1194.93 5724 3 [192]
ケプラー159 はくちょう座  19h 48m 16.8385s +40° 52′ 07.6492″ 15.386 1218.05 M0V 0.76 4644 25.1 2 (1) [193]
ケプラー80 はくちょう座  19h 44m 27.0201s +39° 58′ 43.5941″ 15.201 1222.70 M0V 0.83 4540 6 [194]
ケプラー88 こと座  19h 24m 35.5431s +40° 40′ 09.8099″ 13.257 1231.01 G8IV 0.990 5466 19 3 [195]
ケプラー132A こと座  18h 52m 56.5642s +41° 20′ 34.9975″ 11.92 1241.035 G1 1.03 6023 43.7 4 [170]
ケプラー174 こと座  19h 09m 45.4027s +43° 49′ 55.4994″ 14.601 1253.82 K5 0.71 4949 49.0 3 [170]
ケプラー1542 こと座  19h 02m 54.8381s +42° 39′ 16.3105″ 12.734 1274.95 G5V 0.94 5564 85.1 4 (1) [170]
ケプラー83A こと座  18h 48m 55.8020s +43° 39′ 56.2496″ 16.145 1296.33 M0V 0.58 4082 30.9 3 [170]
ケプラー104A こと座  19h 10m 25.1129s +42° 10′ 00.2552″ 12.73 1318.82 G0V 1.01 6032 37.2 3 [170]
ケプラー451AB はくちょう座  19h 38m 32.6124s +46° 03′ 59.1352″ 12.69 1336.16 sdB+dM 0.48 29564 3 [196][注 4]
ケプラー169 こと座  19h 03m 59.9740s +40° 55′ 09.6117″ 14.410 1349.71 0.84 5070 37.2 5 [170]
ケプラー271 こと座  18h 52m 00.7169s +44° 17′ 03.1887″ 13.583 1372.65 F9 0.90 5555 45.7 3 (2) [170]
ケプラー124 りゅう座  19h 07m 00.6696s +49° 03′ 53.5780″ 14.329 1378.51 0.73 5133 18.2 3 [170]
ケプラー334 こと座  19h 08m 33.7576s +47° 06′ 54.7213″ 12.839 1381.55 G0 1.07 5958 40.7 3 [170]
ケプラー18 はくちょう座  19h 52m 19.0688s +44° 44′ 46.8079″ 13.767 1423.27 0.972 5383 100 3 [197]
ケプラー106 はくちょう座  20h 03m 27.3499s +44° 20′ 15.1920″ 12.963 1443.30 G1 1.05 5955 33.1 4 [170]
ケプラー304 はくちょう座  19h 37m 46.0343s +40° 33′ 27.1992″ 15.065 1449.78 0.80 4817 20.9 4 [170]
ケプラー1388 こと座  18h 53m 20.6548s +47° 10′ 28.2578″ 16.430 1496.82 M0V 0.63 4098 44.7 4 [170]
ケプラー89 はくちょう座  19h 49m 19.9343s +41° 53′ 28.0060″ 11.991 1548.04 1.25 6116 39 4 [198]
ケプラー326 はくちょう座  19h 37m 18.1338s +46° 00′ 08.0631″ 13.863 1560.18 K1V 0.85 5148 46.8 3 [170]
ケプラー92 こと座  19h 16m 20.6547s +41° 33′ 46.6543″ 11.849 1569.87 G0IV 1.17 5830 58.9 3 [170]
ケプラー450 はくちょう座  19h 41m 56.7728s +51° 00′ 48.5823″ 11.692 1571.08 1.30 6263 30.2 3 [170]
ケプラー431 こと座  18h 44m 26.9622s +43° 13′ 40.0404″ 12.021 1610.73 F6IV 1.15 6087 42.7 3 [170]
K2-282 うお座  00h 53m 43.6834s +07° 59′ 43.1411″ 14.04 1616.16 G8 0.95 5523 3 [192][199]
ケプラー107 はくちょう座  19h 48m 06.7735s +48° 12′ 30.9642″ 12.639 1693.53 1.238 5854 4 [120]
ケプラー176 はくちょう座  19h 38m 40.3180s +43° 51′ 11.7589″ 14.767 1708.43 0.87 5295 46.8 4 [170]
ケプラー354 こと座  19h 03m 00.3549s +41° 20′ 08.2970″ 15.771 1779.55 K5 0.73 4634 52.5 3 [170]
ケプラー338 こと座  18h 51m 54.9519s +40° 47′ 03.6757″ 12.19 1796.91 G0 1.20 5999 47.9 4 [170]
ケプラー142 はくちょう座  19h 40m 28.5407s +48° 28′ 52.6543″ 13.318 1823.53 1.06 5872 55 3 [170]
ケプラー331 こと座  19h 27m 20.2412s +39° 18′ 26.4855″ 16.199 1854.22 0.74 4631 32.4 3 [170]
ケプラー55 こと座  19h 00m 40.4014s +44° 01′ 35.3690″ 15.746 1870.06 K5 0.72 4508 23.4 5 [170]
ケプラー149 こと座  19h 03m 24.8909s +38° 23′ 02.8106″ 14.152 1897.03 K0V 0.92 5377 63.1 3 [170]
ケプラー206 こと座  19h 26m 32.3160s +41° 50′ 01.9196″ 13.507 1935.07 G3 1.05 5853 52.5 3 [170]
ケプラー336 こと座  19h 20m 57.0312s +41° 19′ 53.0554″ 13.688 1939.33 G3 1.09 5911 49 3 [170]
ケプラー191 はくちょう座  19h 24m 44.0051s +45° 19′ 23.3979″ 14.987 1953.62 G9 0.84 5215 49 3 [170]
ケプラー166 はくちょう座  19h 32m 38.4340s +48° 52′ 52.3888″ 14.93 1979.22 K1 0.88 5350 44.7 3 [170]
ケプラー184 こと座  19h 27m 48.4549s +43° 04′ 28.9735″ 14.460 2009.47 F2 0.97 5699 44.7 3 [170]
ケプラー9 こと座  19h 02m 17.7544s +38° 24′ 03.1769″ 13.9 2061.28 G2 1.022 5774 20 3 [200]
ケプラー1254 りゅう座  19h 00m 41.5973s +48° 46′ 12.0607″ 15.541 2084.60 K3 0.78 4985 56.2 3 [170]
ケプラー402 こと座  19h 13m 28.8535s +43° 21′ 16.5826″ 13.317 2092.76 F2 1.15 6199 33.1 4 (1) [170]
ケプラー11 はくちょう座  19h 48m 27.6226s +41° 54′ 32.9032″ 13.838 2107.50 G2V 1.042 5836 32 6 [201]
ケプラー192 こと座  19h 11m 40.2999s +45° 35′ 34.4254″ 14.223 2130.49 G7 0.94 5487 67.6 3 [170]
ケプラー247 こと座  19h 14m 34.2068s +43° 02′ 21.4971″ 15.458 2183.40 0.84 5130 42.7 3 [170]
ケプラー218 はくちょう座  19h 41m 39.0787s +46° 15′ 59.3647″ 14.076 2184.28 G8IV 1.01 5542 56.2 3 [170]
PSR B1257+12 おとめ座  13h 00m 03.1075s +12° 40′ 55.155″ 2313.17 パルサー 1.4 30 3 [202]
ケプラー357 はくちょう座  19h 24m 58.3359s +44° 00′ 31.3481″ 15.735 2315.63 0.81 5029 44.7 3 [170]
ケプラー203 はくちょう座  19h 48m 21.5924s +41° 23′ 16.9860″ 14.107 2336.70 G1 1.00 5794 55 3 [170]
ケプラー178 こと座  19h 08m 24.2566s +46° 53′ 47.3606″ 14.788 2355.43 0.94 5535 46.8 3 [170]
ケプラー289 はくちょう座  19h 49m 51.6736s +42° 52′ 58.2689″ 14.175 2369.81 G2 1.08 6001 38 3 (1) [170]
ケプラー363 こと座  18h 52m 46.1054s +41° 18′ 19.3156″ 13.473 2489.93 G5V 1.10 5681 52.5 3 [170]
ケプラー157 こと座  19h 24m 23.3283s +38° 52′ 32.1424″ 14.206 2510.63 G3 1.02 5866 40.7 3 [170]
ケプラー46 はくちょう座  19h 17m 04.4930s +42° 36′ 15.0413″ 15.741 2516.06 0.902 5155 97 3 [203][204]
ケプラー342 はくちょう座  19h 30m 42.7396s +46° 43′ 36.1590″ 13.20 2566.34 F6IV 1.26 6366 20.4 4 [170]
ケプラー85 はくちょう座  19h 23m 53.6255s +45° 17′ 25.0889″ 14.932 2590.60 0.92 5499 43.7 4 [170]
ケプラー51 はくちょう座  19h 45m 55.1429s +49° 56′ 15.6505″ 14.885 2618.26 G4 0.985 5670 5 4 [205][206]
ケプラー148 はくちょう座  19h 19m 08.6834s +46° 51′ 31.7389″ 15.648 2627.54 0.86 5172 46.8 3 [170]
ケプラー325 はくちょう座  19h 19m 20.5055s +49° 49′ 32.1633″ 15.262 2699.08 G5 0.91 5535 41.7 3 [170]
ケプラー1047 はくちょう座  19h 14m 35.1094s +50° 47′ 20.4254″ 13.460 2714.12 G8V 1.08 5754 44.7 2 (1) [170]
ケプラー172 こと座  18h 53m 28.4170s +41° 49′ 18.5512″ 14.702 2760.29 G8 1.00 5599 64.6 4 [170]
ケプラー245 はくちょう座  19h 26m 33.3542s +42° 26′ 10.7791″ 16.104 2762.87 0.86 5174 36.3 4 [170]
ケプラー90 りゅう座  18h 57m 44.0383s +49° 18′ 18.4965″ 13.896 2788.85 F9IV/V 1.2 6080 8 [207][208][209]
ケプラー171 はくちょう座  19h 47m 05.2539s +41° 45′ 19.9901″ 15.066 2814.36 1.07 5949 34.7 3 [170]
ケプラー305 はくちょう座  19h 56m 53.8365s +40° 20′ 35.4452″ 15.851 2832.69 0.85 5117 43.7 4 [170][210]
ケプラー403 はくちょう座  19h 19m 41.1510s +46° 44′ 40.4889″ 12.818 2838.86 F9 1.25 6209 30.9 3 (1) [170]
ケプラー23 はくちょう座  19h 36m 52.5355s +49° 28′ 45.2526″ 13.547 2862.27 G2V 1.078 5828 40 - 80 3 [211][212]
ケプラー30 こと座  19h 01m 08.0746s +38° 56′ 50.2182″ 15.726 2934.91 0.99 5498 20 3 [213]
ケプラー399 はくちょう座  19h 58m 00.4156s +40° 40′ 14.8892″ 14.686 2947.91 0.94 5682 39.8 3 [170]
ケプラー150 こと座  19h 12m 56.1835s +40° 31′ 15.2084″ 15.228 2956.73 0.94 5589 45.7 5 [170]
ケプラー164 こと座  19h 11m 07.3973s +47° 37′ 47.6344″ 14.379 3004.39 1.09 6048 34.7 4 [170][214]
ケプラー82 はくちょう座  19h 31m 29.6084s +42° 57′ 58.0676″ 15.318 3029.79 0.96 5529 46.8 5 [170]
ケプラー56 はくちょう座  19h 35m 02.0012s +41° 52′ 18.6924″ 12.756 3032.60 K3III 1.286 4973 39.2 3 [215][216]
ケプラー154 はくちょう座  19h 19m 07.3336s +49° 53′ 47.5507″ 14.57 3050.19 G6 0.94 5564 85.1 6 (1) [217][注 5]
ケプラー160 こと座  19h 11m 05.6526s +42° 52′ 09.4728″ 14.777 3064.23 G5 0.97 5471 40.7 3 (1) [170][220]
ケプラー58 はくちょう座  19h 45m 26.0755s +39° 06′ 54.7291″ 15.086 3213.36 1.33 6429 21.4 4 [170]
ケプラー401 はくちょう座  19h 20m 19.8618s +50° 51′ 48.5387″ 13.366 3256.03 1.17 6117 33.9 3 [170]
ケプラー350 こと座  19h 01m 40.7038s +39° 42′ 22.0161″ 13.884 3282.90 F5 1.19 6222 32.4 3 [170]
ケプラー79 はくちょう座  20h 02m 04.1057s +44° 22′ 53.6460″ 13.98 3349.32 F5 1.18 6223 32.4 4 [170]
ケプラー47AB はくちょう座  19h 41m 11.4983s +46° 55′ 13.7073″ 15.31 3418.83 G+M 0.957 5636 40 - 50 3 [221][222][注 4]
ケプラー255 はくちょう座  19h 44m 15.4217s +45° 58′ 36.6045″ 15.699 3437.93 0.90 5431 43.7 3 [170]
ケプラー122 はくちょう座  19h 24m 26.8513s +39° 56′ 56.5990″ 14.378 3452.85 1.08 6076 38.9 5 [170]
ケプラー60 はくちょう座  19h 15m 50.6984s +42° 15′ 54.0503″ 14.083 3487.18 G2 1.09 5961 51.3 3 (1) [170]
ケプラー27 はくちょう座  19h 28m 56.8196s +41° 05′ 09.1405″ 15.992 3507.81 0.95 5294 16.2 3 (2) [170][223]
ケプラー279 こと座  19h 09m 33.9051s +42° 11′ 41.3574″ 13.647 3517.27 F3V 1.32 6488 25.7 3 (1) [170]
ケプラー292 はくちょう座  19h 43m 03.8775s +42° 25′ 27.4497″ 16.303 3545.56 0.85 5282 51.3 5 [170]
ケプラー217 はくちょう座  19h 32m 09.0586s +46° 16′ 39.0676″ 13.155 3569.62 F3V 1.37 6341 26.3 3 [170]
ケプラー276 はくちょう座  19h 34m 16.3567s +39° 02′ 10.7076″ 15.481 3631.63 G7 1.02 5833 38 3 [170]
ケプラー194 はくちょう座  19h 27m 53.1542s +47° 51′ 50.9532″ 14.969 3694.99 G3 1.09 5965 35.5 3 [170]
ケプラー351 こと座  19h 05m 48.6588s +42° 39′ 28.3198″ 16.206 3762.76 0.81 5225 49 3 [170]
ケプラー24 こと座  19h 21m 39.1857s +38° 20′ 37.4502″ 15.126 3923.92 0.98 5952 61.7 4 [170]
ケプラー33 こと座  19h 16m 18.6100s +46° 00′ 18.8137″ 14.146 4008.81 F2 1.26 5947 42 5 [224]
ケプラー374 はくちょう座  19h 36m 33.1031s +42° 22′ 13.7218″ 14.873 4044.10 G3 1.04 5898 38.9 3 (2) [170]
ケプラー87 はくちょう座  19h 51m 40.0490s +46° 57′ 54.4253″ 14.681 4179.88 F9 1.11 5649 72.4 2 (1) [170]
ケプラー282 こと座  18h 58m 42.5471s +44° 47′ 51.5984″ 15.444 4377.35 0.90 5699 52.5 4 [170]
ケプラー53 こと座  19h 21m 50.8278s +40° 33′ 44.8871″ 15.352 4667.38 0.98 5767 38.9 3 [170]
ケプラー84 はくちょう座  19h 53m 00.4852s +40° 29′ 45.9477″ 14.92 4707.12 1.06 6039 39.8 5 [170]
ケプラー359 はくちょう座  19h 33m 10.4714s +42° 11′ 46.9324″ 15.805 4807.73 1.14 6090 30.2 3 [170]
ケプラー372 はくちょう座  19h 25m 01.4897s +49° 15′ 32.2931″ 14.928 4874.55 1.12 6146 30.9 3 [170]
ケプラー385 はくちょう座  19h 37m 21.2382s +50° 20′ 11.5477″ 15.76 4944.01 0.99 5835 3 (4) [225]
ケプラー758 はくちょう座  19h 32m 20.3082s +41° 08′ 07.5607″ 14.379 4947.76 1.16 6228 38 4 [170]
ケプラー31 はくちょう座  19h 36m 05.5270s +45° 51′ 11.1079″ 15.388 5424.19 1.08 6121 41.7 3 (1) [170]
ケプラー603 はくちょう座  19h 39m 07.4367s +42° 17′ 27.3941″ 15.034 5979.04 1.01 5808 43.7 3 [170]
ケプラー238 こと座  19h 11m 35.3058s +40° 38′ 16.1438″ 15.297 6125.00 1.06 5732 67.6 5 [170]
ケプラー275 はくちょう座  19h 29m 55.1289s +38° 30′ 53.6708″ 15.382 6477.78 1.16 6193 33.1 3 (1) [170]
[[]] °

(英語版に記載がない該当惑星系残り:TOI-4010、ケプラー10、ケプラー249、K2-80、ケプラー1130、ケプラー352、ケプラー267、ケプラー381、ケプラー968、ケプラー158、ケプラー197、K2-16、ケプラー221、ケプラー139、ケプラー129、ケプラー235、ケプラー196、ケプラー215、ケプラー1530、ケプラー198、ケプラー324、ケプラー319、ケプラー298、ケプラー1669、ケプラー1987、ケプラー310、ケプラー339、ケプラー549、ケプラー416、ケプラー297、ケプラー290、ケプラー301、ケプラー222、ケプラー250、ケプラー1321、ケプラー208、ケプラー306、ケプラー311、ケプラー257、ケプラー224、ケプラー219、ケプラー529、ケプラー1073、ケプラー229、ケプラー253、ケプラー245、ケプラー1311、ケプラー487、ケプラー207、ケプラー272、ケプラー619、ケプラー251、ケプラー770、ケプラー616、ケプラー763、ケプラー266、ケプラー256、ケプラー341、ケプラー299、ケプラー394、ケプラー457、ケプラー288、ケプラー286、ケプラー265、ケプラー347、ケプラー254、ケプラー228、ケプラー295、ケプラー281、ケプラー223、ケプラー1468)

脚注

[編集]

注釈

[編集]
  1. ^ HD 133131 系は HD 133131 A と HD 133131 B の2つの恒星から成る連星系であり、前者には2つの惑星、後者には1つの惑星が周囲を公転していることが知られている。ここでは HD 133131 系全体の総数として惑星を3個持つものとして扱う。
  2. ^ NASA Exoplanet Archive では1個の惑星(K2-302b)と1個の惑星候補(EPIC 206215704.01)が存在していると扱われているが[159]、太陽系外惑星エンサイクロペディアでは3個目の惑星(K2-302b、c、d)が確認済みとして扱われている[160]
  3. ^ XO-2系は XO-2A (XO-2S) と XO-2B (XO-2N) の2つの恒星から成る連星系であり、前者には3つの惑星、後者には1つの惑星が周囲を公転していることが知られている。ここでは XO-2 系全体の総数として惑星を4個持つものとして扱う。
  4. ^ a b この惑星系の惑星は、複数の恒星から成る連星全体を公転している周連星惑星であることが知られている。ここでは主星である連星のうち、質量が大きい方の恒星の質量・有効温度・年齢のみを表示している。
  5. ^ NASA Exoplanet Archive では5個の惑星(ケプラー154b、c、d、e、f)と1個の惑星候補(KOI-435.02)が存在していると扱われているが[218]、太陽系外惑星エンサイクロペディアでは2020年に公表された研究で報告された6個目の惑星(ケプラー154g)も確認済みとして扱われている[219]。このケプラー154gと KOI-435.02 が同一の惑星であるかは研究内では言及されていないが[217]、ここでは両者を区別して6個の惑星と1個の惑星候補を持つ惑星系として扱う。

出典

[編集]
  1. ^ a b 井田茂田村元秀生駒大洋関根康人 編『系外惑星の事典』朝倉書店、2016年9月15日、欧文索引 - M頁。ISBN 978-4-254-15021-6 
  2. ^ 太陽系外の複数惑星系における惑星同士の食を初めて発見』(プレスリリース)東京大学大学院、2012年1月5日https://www.s.u-tokyo.ac.jp/ja/press/2012/40.html2020年10月11日閲覧 
  3. ^ コンパクトな複数惑星系は低金属量星の周囲にできやすい”. AstroArts (2018年10月31日). 2020年10月11日閲覧。
  4. ^ 太陽系外惑星、灼熱の巨大惑星、超巨大コアをもつ惑星”. 理科年表オフィシャルサイト. 2023年1月25日閲覧。
  5. ^ 須藤靖 (2019年10月8日). “2019年ノーベル物理学賞は,物理的宇宙論における数々の理論的発見に対してジェームズ・ピーブルズ教授に、 また太陽と似た恒星の周りを公転する太陽系外の惑星の発見に対してミシェル・マイヨール教授とディディエ・ケロー教授の3名が受賞した。”. 日本物理学会. 2020年12月26日閲覧。
  6. ^ Exoplanet and Candidate Statistics”. NASA Exoplanet Archive. IPAC英語版/Caltech. 2024年12月1日閲覧。
  7. ^ Vallenari, A. et al. (2022). “Gaia Data Release 3. Summary of the content and survey properties”. Astronomy & Astrophysics. arXiv:2208.00211. doi:10.1051/0004-6361/202243940 
  8. ^ Williams, D.R. (2004年). “Sun Fact Sheet”. NASA. Goddard Space Flight Center. 2015年10月15日閲覧。
  9. ^ a b c d e f g h i Pineda, J. Sebastian; Youngblood, Allison; France, Kevinl (2021). “The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars”. The Astrophysical Journal 918 (1): 23. arXiv:2106.07656. Bibcode2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. 40. 
  10. ^ Kervella, P.; Thévenin, F.; Lovis, C. (2017). “Proxima's orbit around α Centauri”. Astronomy and Astrophysics 598: L7. arXiv:1611.03495. Bibcode2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. 
  11. ^ Mascareño, A. Suárez; Faria, J. P.; Figueira, P. et al. (2020). “Revisiting Proxima with ESPRESSO”. Astronomy and Astrophysics 639: A77. arXiv:2005.12114. Bibcode2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. 
  12. ^ Faria, J. P.; Suárez Mascareño, A.; Figueira, P. et al. (2022). “A candidate short-period sub-Earth orbiting Proxima Centauri”. Astronomy and Astrophysics (EDP Sciences) 658: A115. arXiv:2202.05188. doi:10.1051/0004-6361/202142337. 
  13. ^ Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J. (2021). “Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate”. The Astronomical Journal 163 (5): 218. arXiv:2107.09087. Bibcode2022AJ....163..218H. doi:10.3847/1538-3881/ac5c47. 
  14. ^ Jeffers, S. V.; Dreizler, S.; Barnes, J. R. et al. (2020). “A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887”. Science 368 (6498): 1477–1481. arXiv:2006.16372. Bibcode2020Sci...368.1477J. doi:10.1126/science.aaz0795. 
  15. ^ Dreizler, S.; Jeffers, S. V.; Rodríguez, E. et al. (2019). “Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061”. Monthly Notices of the Royal Astronomical Society 493 (1): 536. arXiv:1908.04717. Bibcode2020MNRAS.493..536D. doi:10.1093/mnras/staa248. 
  16. ^ Astudillo-Defru, Nicola; Díaz, Rodrigo F.; Bonfils, Xavier et al. (2017). “The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti”. Astronomy and Astrophysics 605: L11. arXiv:1708.03336. Bibcode2017A&A...605L..11A. doi:10.1051/0004-6361/201731581. 
  17. ^ Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C. et al. (2020). “GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec”. Astronomy and Astrophysics 641: A23. arXiv:2006.09403. Bibcode2020A&A...641A..23P. doi:10.1051/0004-6361/202038047. 
  18. ^ Caballero, J. A.; Reiners, Ansgar; Ribas, I. et al. (2019). “The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star”. Astronomy and Astrophysics 627: A49. arXiv:1906.07196. Bibcode2019A&A...627A..49Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. 
  19. ^ Dreizler, S.; Luque, R.; Ribas, I. et al. (2024). “Teegarden's Star revisited: A nearby planetary system with at least three planets”. Astronomy and Astrophysics 684: A117. arXiv:2402.00923. Bibcode2024A&A...684A.117D. doi:10.1051/0004-6361/202348033. 
  20. ^ Wright, D. J; Wittenmyer, R. A; Tinney, C. G et al. (2016). “Three Planets Orbiting Wolf 1061”. The Astrophysical Journal Letters 817 (2): L20. arXiv:1512.05154. Bibcode2016ApJ...817L..20W. doi:10.3847/2041-8205/817/2/L20. 
  21. ^ Moutou, C.; Delfosse, X.; Petit, A. C. et al. (2023). “Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148”. Astronomy and Astrophysics 678: A207. arXiv:2307.11569. Bibcode2023A&A...678A.207M. doi:10.1051/0004-6361/202346813. 
  22. ^ Luck, R. Earle (2018). “Abundances in the Local Region. III. Southern F, G, and K Dwarfs”. The Astronomical Journal 155 (3): 111. Bibcode2018AJ....155..111L. doi:10.3847/1538-3881/aaa9b5. ISSN 0004-6256. 
  23. ^ Pepe, F.; Lovis, C.; Ségransan, D. et al. (2011). “The HARPS search for Earth-like planets in the habitable zone: I – Very low-mass planets around HD20794, HD85512 and HD192310”. Astronomy and Astrophysics 534: A58. arXiv:1108.3447. Bibcode2011A&A...534A..58P. doi:10.1051/0004-6361/201117055. 
  24. ^ a b Cretignier, M.; Dumusque, X.; Aigrain, S.; Pepe, F. (2023). “YARARA V2: Reaching sub-m s−1 precision over a decade using PCA on line-by-line radial velocities”. Astronomy and Astrophysics 678: A2. arXiv:2308.11812. Bibcode2023A&A...678A...2C. doi:10.1051/0004-6361/202347232. 
  25. ^ von Stauffenberg, A.; Trifonov, T.; Quirrenbach, A. et al. (2024). “The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES”. Astronomy and Astrophysics 688 (A112): 21. arXiv:2407.11520. Bibcode2024A&A...688A.112V. doi:10.1051/0004-6361/202449375. ISSN 0004-6361. 
  26. ^ Engle, Scott G.; Guinan, Edward F. (2023). “Living with a Red Dwarf: The Rotation-Age Relationships of M Dwarfs”. The Astrophysical Journal Letters 954 (2): L50. arXiv:2307.01136. Bibcode2023ApJ...954L..50E. doi:10.3847/2041-8213/acf472. 
  27. ^ Seager, Sara; Knapp, Mary; Demory, Brice-Olivier et al. (2021). “HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS”. The Astronomical Journal 161 (3): 15. Bibcode2021AJ....161..117S. doi:10.3847/1538-3881/abcd3d. 117. 
  28. ^ Vogt, Steven S.; Burt; Meschiari, Stefano et al. (2015). “Six Planets Orbiting HD 219134”. The Astrophysical Journal 814: 12. arXiv:1509.07912. Bibcode2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. 
  29. ^ Sloane, Stephen A.; Guinan, Edward F.; Engle, Scott G. (2023). “Super-Earth GJ 667Cc: Age and XUV Irradiances of the Temperate-zone Planet with Potential for Advanced Life”. Research Notes of the AAS 7 (6): 135. Bibcode2023RNAAS...7..135S. doi:10.3847/2515-5172/ace189. ISSN 2515-5172. 
  30. ^ Robertson, Paul; Mahadevan, Suvrath (2014). “Disentangling Planets and Stellar Activity for Gliese 667C”. The Astrophysical Journal 793 (2): L24. arXiv:1409.0021. Bibcode2014ApJ...793L..24R. doi:10.1088/2041-8205/793/2/L24. 
  31. ^ a b Laliotis, Katherine; Burt, Jennifer A.; Mamajek, Eric E. et al. (2023). “Doppler Constraints on Planetary Companions to Nearby Sun-like Stars: An Archival Radial Velocity Survey of Southern Targets for Proposed NASA Direct Imaging Missions”. The Astronomical Journal 165 (4): 176. arXiv:2302.10310. Bibcode2023AJ....165..176L. doi:10.3847/1538-3881/acc067. 
  32. ^ Zechmeister, M.; Kürster, M.; Endl, M. (2009). “The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs”. Astronomy and Astrophysics 505 (2): 859–871. arXiv:0908.0944. Bibcode2009A&A...505..859Z. doi:10.1051/0004-6361/200912479. 
  33. ^ Houdebine, E. R. (2010). “Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars”. Monthly Notices of the Royal Astronomical Society 407 (3): 1657–1673. Bibcode2010MNRAS.407.1657H. doi:10.1111/j.1365-2966.2010.16827.x. 
  34. ^ a b Feng, Fabo; Butler, R. Paul; Shectman, Stephen A. et al. (2020). “Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs”. The Astrophysical Journal Supplement Series 246 (1): 38. arXiv:2001.02577. Bibcode2020ApJS..246...11F. doi:10.3847/1538-4365/ab5e7c. ISSN 1538-4365. 11. 
  35. ^ Lam, Kristine W. F.; Csizmadia, Szilárd; Astudillo-Defru, Nicola et al. (2021). “GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star”. Science 374 (6572): 1271–1275. arXiv:2112.01309. Bibcode2021Sci...374.1271L. doi:10.1126/science.aay3253. PMID 34855492. 
  36. ^ Goffo, Elisa; Gandolfi, Davide; Egger, Jo Ann et al. (2023). “Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days”. The Astrophysical Journal Letters 955 (1): L3. arXiv:2307.09181. Bibcode2023ApJ...955L...3G. doi:10.3847/2041-8213/ace0c7. 
  37. ^ Luque, R.; Pallé, E.; Kossakowski, D. et al. (2019). “Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization”. Astronomy and Astrophysics 628 (A39): 18. arXiv:1904.12818. Bibcode2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. 
  38. ^ Donati, J.-F.; Cristofari, P. I.; Finociety, B. et al. (2023). “The magnetic field and multiple planets of the young dwarf AU Mic”. Monthly Notices of the Royal Astronomical Society 525: 455–475. arXiv:2304.09642. doi:10.1093/mnras/stad1193. ISSN 0035-8711. 
  39. ^ Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y. et al. (2021). “A warm terrestrial planet with half the mass of Venus transiting a nearby star”. Astronomy and Astrophysics 653: 38. arXiv:2108.03323. Bibcode2021A&A...653A..41D. doi:10.1051/0004-6361/202140728. 
  40. ^ Schweitzer, A.; Passegger, V. M.; Cifuentes, C. et al. (2019). “The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars”. Astronomy and Astrophysics 625: 16. arXiv:1904.03231. Bibcode2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. A68. 
  41. ^ Miles, Brittany E.; Shkolnik, Evgenya L. (2017). “HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive”. The Astronomical Journal 154 (2): 67. arXiv:1705.03583. Bibcode2017AJ....154...67M. doi:10.3847/1538-3881/aa71ab. ISSN 1538-3881. 
  42. ^ Palle, E.; Orell-Miquel, J.; Brady, M. et al. (2023). “GJ 806 (TOI-4481): A bright nearby multi-planetary system with a transiting hot, low-density super-Earth”. Astronomy and Astrophysics 678 (A80): 28. arXiv:2301.06873. Bibcode2023A&A...678A..80P. doi:10.1051/0004-6361/202244261. 
  43. ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L. et al. (2021). “Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides”. The Planetary Science Journal 2 (1): 38. arXiv:2010.01074. Bibcode2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. 1. 
  44. ^ Burgasser, Adam J.; Mamajek, Eric E. (2017). “On the Age of the TRAPPIST-1 System”. The Astrophysical Journal 845 (2): 110. arXiv:1706.02018. Bibcode2017ApJ...845..110B. doi:10.3847/1538-4357/aa7fea. ISSN 1538-4357. 
  45. ^ Tanner, Angelle; Boyajian, Tabetha S.; von Braun, Kaspar et al. (2015). “Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt”. The Astrophysical Journal 800 (2): 5. arXiv:1412.5251. Bibcode2015ApJ...800..115T. doi:10.1088/0004-637X/800/2/115. 115. 
  46. ^ von Braun, Kaspar; Tabetha, S. Boyajian; ten Brummelaar, Theo et al. (2011). “55 Cancri: Stellar Astrophysical Parameters, a Planet in the Habitable Zone, and Implications for the Radius of a Transiting Super-Earth”. The Astrophysical Journal 740 (1): 49–54. arXiv:1106.1152. Bibcode2011ApJ...740...49V. doi:10.1088/0004-637X/740/1/49. 
  47. ^ Bourrier, V.; Dumusque, X.; Dorn, C. et al. (2018). “The 55 Cancri system reassessed”. Astronomy and Astrophysics 619: A1. arXiv:1807.04301. Bibcode2018A&A...619A...1B. doi:10.1051/0004-6361/201833154. 
  48. ^ Nordström, B.; Mayor, M.; Andersen, J. et al. (2004). “The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs”. Astronomy and Astrophysics 418: 989–1019. Bibcode2004A&A...418..989N. doi:10.1051/0004-6361:20035959. 
  49. ^ Díaz, R. F.; Ségransan, D.; Udry, S. et al. (2016). “The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles”. Astronomy and Astrophysics 585: A134. arXiv:1510.06446. Bibcode2016A&A...585A.134D. doi:10.1051/0004-6361/201526729. 
  50. ^ Fuhrmann, Klaus; Pfeiffer, Michael J.; Bernkopf, Jan (1998). “F- and G-type stars with planetary companions: upsilon Andromedae, rho (1) Cancri, tau Bootis, 16 Cygni and rho Coronae Borealis”. Astronomy and Astrophysics 336: 942–952. Bibcode1998A&A...336..942F. 
  51. ^ Baines, Ellyn K.; Thomas Armstrong, J.; Clark, James H. et al. (2021). “Angular Diameters and Fundamental Parameters of Forty-four Stars from the Navy Precision Optical Interferometer”. The Astronomical Journal 162 (5): 198. arXiv:2211.09030. Bibcode2021AJ....162..198B. doi:10.3847/1538-3881/ac2431. ISSN 0004-6256. 
  52. ^ Deitrick, R.; Barnes, R.; McArthur, B. et al. (2015). “The Three-dimensional Architecture of the υ Andromedae Planetary System”. The Astrophysical Journal 798 (1): 46. arXiv:1411.1059. Bibcode2015ApJ...798...46D. doi:10.1088/0004-637X/798/1/46. 
  53. ^ Kovtyukh, V. V.; Soubiran, C.; Belik, S. I.; Gorlova, N. I. (2003). “High precision effective temperatures for 181 F-K dwarfs from line-depth ratios”. Astronomy and Astrophysics 411 (3): 559–564. arXiv:astro-ph/0308429. Bibcode2003A&A...411..559K. doi:10.1051/0004-6361:20031378. 
  54. ^ Saffe, C.; Gómez, M.; Chavero, C. (2005). “On the Ages of Exoplanet Host Stars”. Astronomy and Astrophysics 443 (2): 609–626. arXiv:astro-ph/0510092. Bibcode2005A&A...443..609S. doi:10.1051/0004-6361:20053452. 
  55. ^ Gregory, P. C.; Fischer, D. A. (2010). “A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris”. Monthly Notices of the Royal Astronomical Society 403 (2): 731–747. arXiv:1003.5549. Bibcode2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. 
  56. ^ Delrez, Laetitia; Ehrenreich, David; Alibert, Yann et al. (2021). “Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS”. Nature Astronomy 5 (8): 775–787. arXiv:2106.14491. Bibcode2021NatAs...5..775D. doi:10.1038/s41550-021-01381-5. ISSN 2397-3366. 
  57. ^ Ehrenreich, D.; Delrez, L.; Akinsanmi, B. et al. (2023). “A full transit of ν2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS”. Astronomy and Astrophysics 671 (A154): 16. arXiv:2302.01853. Bibcode2023A&A...671A.154E. doi:10.1051/0004-6361/202244790. 
  58. ^ Cadieux, Charles; Plotnykov, Mykhaylo; Doyon, René et al. (2023). “New Mass and Radius Constraints on the LHS 1140 Planets: LHS 1140 b Is either a Temperate Mini-Neptune or a Water World”. The Astrophysical Journal Letters 960 (1): L3. arXiv:2310.15490. Bibcode2024ApJ...960L...3C. doi:10.3847/2041-8213/ad1691. ISSN 2041-8205. 
  59. ^ Linsky, Jeffrey L.; Wood, Brian E.; Youngblood, Allison et al. (2020). “The Relative Emission from Chromospheres and Coronae: Dependence on Spectral Type and Age”. The Astrophysical Journal 902 (1): 15. arXiv:2009.01958. Bibcode2020ApJ...902....3L. doi:10.3847/1538-4357/abb36f. 3. 
  60. ^ Tuomi, M.; Jones, H. R. A.; Butler, R. P.; et al. (27 July 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644v2 [astro-ph.EP]。
  61. ^ Soriano, M.; Vauclair, S. (2009). “New seismic analysis of the exoplanet-host star Mu Arae”. Astronomy and Astrophysics 513: A49. arXiv:0903.5475. Bibcode2010A&A...513A..49S. doi:10.1051/0004-6361/200911862. 
  62. ^ McCarthy, Chris; Butler, R. Paul; Tinney, C. G. et al. (2004). “Multiple Companions to HD 154857 and HD 160691”. The Astrophysical Journal 617 (1): 575–579. arXiv:astro-ph/0409335. Bibcode2004ApJ...617..575M. doi:10.1086/425214. 
  63. ^ Anglada-Escudé, Guillem; Tuomi, Mikko (2012). “A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems”. Astronomy 548: A58. arXiv:1206.7118. Bibcode2012A&A...548A..58A. doi:10.1051/0004-6361/201219910. 
  64. ^ McArthur, Barbara E.; Benedict, G. Fritz; Henry, Gregory W. et al. (2014). “Astrometry, Radial Velocity, and Photometry: The HD 128311 System Remixed with Data from HST, HET, and APT”. The Astrophysical Journal 795 (1): 41. Bibcode2014ApJ...795...41M. doi:10.1088/0004-637X/795/1/41. 
  65. ^ Dalal, S. (2024). “Trio of super-Earth candidates orbiting K-dwarf HD 48948: a new habitable zone candidate”. Monthly Notices of the Royal Astronomical Society 531 (4): 4464–4481. Bibcode2024MNRAS.531.4464D. doi:10.1093/mnras/stae1367. https://academic.oup.com/mnras/article/531/4/4464/7696217. 
  66. ^ a b c d Bonfanti, A.; Ortolani, S.; Piotto, G.; Nascimbeni, V. (2015). “Revising the ages of planet-hosting stars”. Astronomy and Astrophysics 575: A18. arXiv:1411.4302. Bibcode2015A&A...575A..18B. doi:10.1051/0004-6361/201424951. 
  67. ^ Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan et al. (2015). “Three Super-Earths Orbiting HD 7924”. The Astrophysical Journal 805 (2): 175. arXiv:1504.06629. Bibcode2015ApJ...805..175F. doi:10.1088/0004-637X/805/2/175. 
  68. ^ Brewer, John M.; Zhao, Lily L.; Fischer, Debra A. et al. (2023). “EXPRES IV: Two Additional Planets Orbiting ρ Coronae Borealis Reveal Uncommon System Architecture”. The Astronomical Journal 166 (2): 46. arXiv:2306.06888. Bibcode2023AJ....166...46B. doi:10.3847/1538-3881/acdd6f. 
  69. ^ a b c d Feng, Fabo; Butler, R. Paul; Vogt, Steven S. et al. (2022). “3D Selection of 167 Substellar Companions to Nearby Stars”. The Astrophysical Journal Supplement Series 262 (1): 27. arXiv:2208.12720. Bibcode2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. 21. 
  70. ^ Silverstein, Michele L.; Barclay, Thomas; Schlieder, Joshua E. et al. (2024). “Validation of a Third Planet in the LHS 1678 System”. The Astronomical Journal 167 (6): 255. arXiv:2403.00110. Bibcode2024AJ....167..255S. doi:10.3847/1538-3881/ad3040. ISSN 0004-6256. 
  71. ^ Astudillo-Defru, Nicola; Bonfils, Xavier; Delfosse, Xavier et al. (2015). “Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543”. Astronomy and Astrophysics 575: A119. arXiv:1411.7048. Bibcode2015A&A...575A.119A. doi:10.1051/0004-6361/201424253. 
  72. ^ a b Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier et al. (2017). “The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293”. Astronomy and Astrophysics 602: A88. arXiv:1703.05386. Bibcode2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. 
  73. ^ Soto, M. G.; Jenkins, J. S. (2018). “Spectroscopic Parameters and atmosphEric ChemIstriEs of Stars (SPECIES). I. Code description and dwarf stars catalogue”. Astronomy and Astrophysics 615: A76. arXiv:1801.09698. Bibcode2018A&A...615A..76S. doi:10.1051/0004-6361/201731533. 
  74. ^ Kane, Stephen R.; Fetherolf, Tara; Li, Zhexing et al. (March 2024). “A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World”. The Astronomical Journal 167 (5): 239. arXiv:2403.17062. Bibcode2024AJ....167..239K. doi:10.3847/1538-3881/ad3820. 
  75. ^ Tsantaki, M.; Sousa, S. G.; Adibekyan, V. Zh. et al. (2013). “Deriving precise parameters for cool solar-type stars. Optimizing the iron line list”. Astronomy and Astrophysics 555: A150. arXiv:1304.6639. Bibcode2013A&A...555A.150T. doi:10.1051/0004-6361/201321103. 
  76. ^ Delisle, J.-B.; Ségransan, D.; Dumusque, X. et al. (2018). “The HARPS search for southern extra-solar planets. XLIII. A compact system of four super-Earth planets orbiting HD 215152”. Astronomy and Astrophysics 614: 9. arXiv:1802.04631. Bibcode2018A&A...614A.133D. doi:10.1051/0004-6361/201732529. A133. 
  77. ^ Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M. et al. (2016). “Three Temperate Neptunes Orbiting Nearby Stars”. The Astrophysical Journal 830 (1): 46. arXiv:1607.00007. Bibcode2016ApJ...830...46F. doi:10.3847/0004-637X/830/1/46. 
  78. ^ Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A. et al. (2021). “The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades”. The Astrophysical Journal Supplement Series 255 (1): 8. arXiv:2105.11583. Bibcode2021ApJS..255....8R. doi:10.3847/1538-4365/abe23c. 
  79. ^ Capistrant, Benjamin K.; Soares-Furtado, Melinda; Vanderburg, Andrew et al. (2024). “TESS Hunt for Young and Maturing Exoplanets (THYME). XI. An Earth-sized Planet Orbiting a Nearby, Solar-like Host in the 400 Myr Ursa Major Moving Group”. The Astronomical Journal 167 (2): 18. arXiv:2401.04785. Bibcode2024AJ....167...54C. doi:10.3847/1538-3881/ad1039. 54. 
  80. ^ Van Eylen, V.; Astudillo-Defru, N.; Bonfils, X. et al. (2021). “Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley”. Monthly Notices of the Royal Astronomical Society 507 (2): 2154-2173. arXiv:2101.01593. Bibcode2021MNRAS.507.2154V. doi:10.1093/mnras/stab2143. 
  81. ^ Unger, N.; Ségransan, D.; Queloz, D. et al. (2021). “The HARPS search for southern extra-solar planets. XLVI. 12 super-Earths around the solar type stars HD 39194, HD 93385, HD 96700, HD 154088, and HD 189567”. Astronomy and Astrophysics 654: 19. arXiv:2108.10198. Bibcode2021&A...654A.104U Check bibcode: length (help). doi:10.1051/0004-6361/202141351. A104. 
  82. ^ Fischer, Debra A.; Gaidos, Eric; Howard, Andrew W. et al. (2012). “M2K. II. A Triple-planet System Orbiting HIP 57274”. The Astrophysical Journal 745 (1): 21. arXiv:1109.2926. Bibcode2012ApJ...745...21F. doi:10.1088/0004-637X/745/1/21. 
  83. ^ Ghezzi, L.; Cunha, K.; Smith, V. V. et al. (2010). “Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicity”. The Astrophysical Journal 720 (2): 1290–1302. arXiv:1007.2681. Bibcode2010ApJ...720.1290G. doi:10.1088/0004-637X/720/2/1290. 
  84. ^ Unger, N.; Ségransan, D.; Queloz, D. et al. (2021). “The HARPS search for southern extra-solar planets”. Astronomy and Astrophysics 654: A104. arXiv:2108.10198. Bibcode2021A&A...654A.104U. doi:10.1051/0004-6361/202141351. ISSN 0004-6361. 
  85. ^ Crossfield, Ian J. M.; Waalkes, William; Newton, Elisabeth R. et al. (2019). “A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18”. The Astrophysical Journal Letters 883 (1): L16. arXiv:1906.09267. Bibcode2019ApJ...883L..16C. doi:10.3847/2041-8213/ab3d30. 
  86. ^ Peterson, Merrin S.; Benneke, Björn; Collins, Karen et al. (2023). “A temperate Earth-sized planet with tidal heating transiting an M6 star.”. Nature 617 (7962): 701–705. doi:10.1038/s41586-023-05934-8. hdl:11603/28165. PMID 37198481. https://pubmed.ncbi.nlm.nih.gov/37198481. 
  87. ^ a b c d e Bonfanti, A.; Ortolani, S.; Nascimbeni, V. (2016). “Age consistency between exoplanet hosts and field stars”. Astronomy and Astrophysics 585: 14. arXiv:1511.01744. Bibcode2016A&A...585A...5B. doi:10.1051/0004-6361/201527297. A5. 
  88. ^ Bouchy, François; Mayor, Michel; Lovis, Christophe et al. (2009). “The HARPS Search for Southern Extra-solar Planets. XVII. Super-Earth and Neptune-mass Planets in Multiple Planet Systems HD 47186 and HD 181433”. Astronomy and Astrophysics 496 (2): 527–531. arXiv:0812.1608. Bibcode2009A&A...496..527B. doi:10.1051/0004-6361:200810669. 
  89. ^ Li, Zhexing; Kane, Stephen R.; Brandt, Timothy D. (2024). “Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System”. The Astronomical Journal 167 (4): 155. arXiv:2401.17415. Bibcode2024AJ....167..155L. doi:10.3847/1538-3881/ad2461. 
  90. ^ Hara, N. C.; Bouchy, F.; Stalport, M. et al. (2020). “The SOPHIE search for northern extrasolar planets: XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain”. Astronomy and Astrophysics 636: L6. arXiv:1911.13296. Bibcode2020A&A...636L...6H. doi:10.1051/0004-6361/201937254. ISSN 0004-6361. 
  91. ^ Baluev, Roman V.; Beaugé, Cristian (2014). “Possible solution to the riddle of HD 82943 multiplanet system: The three-planet resonance 1:2:5?”. Monthly Notices of the Royal Astronomical Society 439 (1): 673–689. arXiv:1310.7101. Bibcode2014MNRAS.439..673B. doi:10.1093/mnras/stt2486. 
  92. ^ Bonomo, A. S.; Dumusque, X.; Massa, A et al. (2023). “Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities. No excess of cold Jupiters in small planet systems”. Astronomy and Astrophysics 677: 18. arXiv:2304.05773. Bibcode2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. A33. 
  93. ^ Kosiarek, Molly R.; Berardo, David A.; Crossfield, Ian J. M. et al. (2021). “Physical Parameters of the Multi-Planet Systems HD 106315 and GJ 9827”. The Astronomical Journal 161 (1): 47. arXiv:2009.03398. Bibcode2021AJ....161...47K. doi:10.3847/1538-3881/abca39. 
  94. ^ Gilbert, Emily A.; Barclay, Thomas; Schlieder, Joshua E. et al. (2020). “The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System”. The Astronomical Journal 160 (3): 116. arXiv:2001.00952. Bibcode2020AJ....160..116G. doi:10.3847/1538-3881/aba4b2. 
  95. ^ Gilbert, Emily A.; Vanderburg, Andrew; Rodriguez, Joseph E. et al. (2023). “A Second Earth-Sized Planet in the Habitable Zone of the M Dwarf, TOI-700”. The Astrophysical Journal Letters 944 (2): L35. arXiv:2301.03617. Bibcode2023ApJ...944L..35G. doi:10.3847/2041-8213/acb599. 
  96. ^ Diez Alonso, E.; Gonzalez Hernandez, J. I.; Suarez Gomez, S. L. et al. (2018). “Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars”. Monthly Notices of the Royal Astronomical Society: Letters 480 (1): L1. arXiv:1806.01181. Bibcode2018MNRAS.480L...1D. doi:10.1093/mnrasl/sly102. 
  97. ^ Wright, J. T.; Veras, Dimitri; Ford, Eric B. et al. (2011). “The California Planet Survey. III. A Possible 2:1 Resonance in the Exoplanetary Triple System HD 37124”. The Astrophysical Journal 730 (2): 61–145. arXiv:1101.1097. Bibcode2011ApJ...730...93W. doi:10.1088/0004-637X/730/2/93. 
  98. ^ Vanderburg, Andrew; Huang, Chelsea X.; Rodriguez, Joseph E. et al. (2019). “TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858”. The Astrophysical Journal 881 (1): L19. arXiv:1905.05193. Bibcode2019ApJ...881L..19V. doi:10.3847/2041-8213/ab322d. 
  99. ^ Luque, R.; Osborn, H. P.; Leleu, A. et al. (2023). “A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067”. Nature 623: 932–937. arXiv:2311.17775. Bibcode2023Natur.623..932L. doi:10.1038/s41586-023-06692-3. 
  100. ^ Osborn, Ares; Armstrong, David J.; Cale, Bryson et al. (2021). “TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet”. Monthly Notices of the Royal Astronomical Society 507 (2): 2782-2803. arXiv:2108.02310. Bibcode2021MNRAS.507.2782O. doi:10.1093/mnras/stab2313. 
  101. ^ Udry, S.; Dumusque, X.; Lovis, C. et al. (2019). “The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions”. Astronomy and Astrophysics 622: A37. arXiv:1705.05153. Bibcode2019A&A...622A..37U. doi:10.1051/0004-6361/201731173. 
  102. ^ Campante, T. L.; Barclay, T.; Swift, J. J. et al. (2015). “An Ancient Extrasolar System with Five Sub-Earth-size Planets”. The Astrophysical Journal 799 (2). arXiv:1501.06227. Bibcode2015ApJ...799..170C. doi:10.1088/0004-637X/799/2/170. 
  103. ^ Buldgen, G.; Farnir, M.; Pezzotti, C. et al. (2019). “Revisiting Kepler-444. I. Seismic modeling and inversions of stellar structure”. Astronomy and Astrophysics 630: A126. arXiv:1907.10315. Bibcode2019A&A...630A.126B. doi:10.1051/0004-6361/201936126. 
  104. ^ Sousa, S. G.; Adibekyan, V.; Delgado-Mena, E. et al. (2018). “SWEET-Cat updated”. Astronomy and Astrophysics 620: A58. arXiv:1810.08108. Bibcode2018A&A...620A..58S. doi:10.1051/0004-6361/201833350. 
  105. ^ Vogt, Steven S.; Butler, R. Paul; Rivera, Eugenio J. et al. (2014). “A Four-Planet System Orbiting the K0V Star Hd 141399”. The Astrophysical Journal 787 (2): 97. arXiv:1404.7462. Bibcode2014ApJ...787...97V. doi:10.1088/0004-637X/787/2/97. 
  106. ^ Udry, S.; Dumusque, X.; Lovis, C. et al. (2019). “The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions”. Astronomy and Astrophysics 622: 29. Bibcode2019A&A...622A..37U. doi:10.1051/0004-6361/201731173. A37. 
  107. ^ Takeda, Genya; Ford, Eric B.; Sills, Alison et al. (2007). “Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog”. The Astrophysical Journal Supplement Series 168 (2): 297. arXiv:astro-ph/0607235. Bibcode2007ApJS..168..297T. doi:10.1086/509763. 
  108. ^ Sousa, S. G.; Santos, N. C.; Mayor, M. et al. (2007). “Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes”. Astronomy and Astrophysics 487 (1): 373–381. arXiv:0805.4826. Bibcode2008A&A...487..373S. doi:10.1051/0004-6361:200809698. 
  109. ^ Holmberg, J.; Nordström, B.; Andersen, J. (2009). “The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics”. Astronomy and Astrophysics Supplement Series 501 (3): 941–947. arXiv:0811.3982. Bibcode2009A&A...501..941H. doi:10.1051/0004-6361/200811191.  VizieRにて年齢のデータの閲覧が可能
  110. ^ Kane, Stephen R.; Gelino, Dawn M. (2014). “On the Inclination and Habitability of the Hd 10180 System”. The Astrophysical Journal 792 (2): 111. arXiv:1408.4150. Bibcode2014ApJ...792..111K. doi:10.1088/0004-637X/792/2/111. 
  111. ^ Barros, S. C. C.; Demangeon, O. D. S.; Alibert, Y. et al. (2022). “HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries”. Astronomy and Astrophysics 665: 24. arXiv:2209.13345. Bibcode2022A&A...665A.154B. doi:10.1051/0004-6361/202244293. A154. 
  112. ^ Mann, Andrew W.; Dupuy, Trent; Muirhead, Philip S.; Johnson, Marshall (2017). “The Gold Standard: Accurate Stellar and Planetary Parameters for Eight Kepler M Dwarf Systems Enabled by Parallaxes”. The Astronomical Journal 153 (6): 267. arXiv:1705.01545. Bibcode2017AJ....153..267M. doi:10.3847/1538-3881/aa7140. 
  113. ^ Gray, Richard O.; Kaye, Anthony B. (1999). “HR 8799: A link between γ Doradus variables and λ Bootis stars”. The Astronomical Journal 118 (6): 2993–2996. Bibcode1999AJ....118.2993G. doi:10.1086/301134. 
  114. ^ Marois, Christian; Zuckerman, B.; Konopacky, Quinn M.; Macintosh, Bruce (2011). “Images of a fourth planet orbiting HR 8799”. Nature 468 (7327): 1080–1083. arXiv:1011.4918. Bibcode2010Natur.468.1080M. doi:10.1038/nature09684. 
  115. ^ Hedges, Christina; Hughes, Alex; Zhou, George et al. (2021). “TOI-2076 and TOI-1807: Two Young, Comoving Planetary Systems within 50 pc Identified by TESS that are Ideal Candidates for Further Follow Up”. The Astronomical Journal 162 (2): 22. arXiv:2111.01311. Bibcode2021AJ....162...54H. doi:10.3847/1538-3881/ac06cd. 54. 
  116. ^ Unger, N.; Ségransan, D.; Queloz, D. et al. (2021). “The HARPS search for southern extra-solar planets XLVI: 12 super-Earths around the solar type stars HD39194, HD93385, HD96700, HD154088, and HD189567”. Astronomy and Astrophysics 654: 19. arXiv:2108.10198. Bibcode2021A&A...654A.104U. doi:10.1051/0004-6361/202141351. A104. 
  117. ^ Trifonov, T.; Kürster, M.; Zechmeister, M. et al. (2017). “Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU”. Astronomy and Astrophysics 602: L8. arXiv:1706.00509. Bibcode2017A&A...602L...8T. doi:10.1051/0004-6361/201731044. 
  118. ^ Diamond-Lowe, Hannah; Kreidberg, Laura; Harman, C. E. et al. (2022). “The K2-3 System Revisited: Testing Photoevaporation and Core-powered Mass Loss with Three Small Planets Spanning the Radius Valley”. The Astronomical Journal 164 (5): 172. arXiv:2207.12755. Bibcode2022AJ....164..172D. doi:10.3847/1538-3881/ac7807. 
  119. ^ Serrano, Luisa Maria; Gandolfi, Davide; Mustill, Alexander J. et al. (2022). “A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system”. Nature Astronomy 6: 736-750. arXiv:2204.13573. Bibcode2022NatAs...6..736S. doi:10.1038/s41550-022-01641-y. 
  120. ^ a b c d e f g h i Bonomo, A. S.; Dumusque, X.; Massa, A et al. (2023). “Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities. No excess of cold Jupiters in small planet systems”. Astronomy and Astrophysics 677: 18. arXiv:2304.05773. Bibcode2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. A33. 
  121. ^ Serrano, Luisa Maria; Gandolfi, Davide; Mustill, Alexander J. et al. (2022). “A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system”. Nature Astronomy 6: 736-750. arXiv:2204.13573. Bibcode2022NatAs...6..736S. doi:10.1038/s41550-022-01641-y. 
  122. ^ Wright, J. T.; Fischer, D. A.; Ford, Eric B. et al. (2009). “A Third Giant Planet Orbiting HIP 14810”. The Astrophysical Journal Letters 699 (2): L97–L101. arXiv:0906.0567. Bibcode2009ApJ...699L..97W. doi:10.1088/0004-637X/699/2/L97. 
  123. ^ Ruggieri, A.; Desidera, S.; Sozzetti, A. et al. (2024). “The GAPS Programme at TNG: LVIII. Two multi-planet systems with long-period substellar companions around metal-rich stars”. Astronomy and Astrophysics 689: 21. Bibcode2024A&A...689A.235R. doi:10.1051/0004-6361/202449456. A235. 
  124. ^ Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S. et al. (2016). “The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B”. The Astronomical Journal 152 (6): 167. arXiv:1608.06216. Bibcode2016AJ....152..167T. doi:10.3847/0004-6256/152/6/167. 
  125. ^ Orell-Miquel, J.; Nowak, G.; Murgas, F. et al. (2023). “HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone”. Astronomy and Astrophysics 669: A40. arXiv:2211.00667. Bibcode2023A&A...669A..40O. doi:10.1051/0004-6361/202244120. 
  126. ^ Lo Curto, G.; Mayor, M.; Benz, W. et al. (2013). “The HARPS search for southern extrasolar planets: XXXVI. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone”. Astronomy and Astrophysics 551: 7. arXiv:1301.2741. Bibcode2013A&A...551A..59L. doi:10.1051/0004-6361/201220415. A59. 
  127. ^ Mugrauer, M.; Neuhäuser, R. (2009). “The multiplicity of exoplanet host stars New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301”. Astronomy and Astrophysics 494 (1): 373–378. arXiv:0812.2561. Bibcode2009A&A...494..373M. doi:10.1051/0004-6361:200810639. 
  128. ^ Vach, Sydney; Quinn, Samuel N.; Vanderburg, Andrew et al. (2022). “TOI-712: A System of Adolescent Mini-Neptunes Extending to the Habitable Zone”. The Astronomical Journal 164 (2): 16. arXiv:2111.02416. Bibcode2022AJ....164...71V. doi:10.3847/1538-3881/ac7954. 71. 
  129. ^ Ciard, David R.; Crossfield, Ian J. M.; Feinstein, Adina D. et al. (2018). “K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet”. The Astronomical Journal 155 (1): 11. arXiv:1709.10398. Bibcode2018AJ....155...10C. doi:10.3847/1538-3881/aa9921. 101. 
  130. ^ Teng, Huan-Yu; Sato, Bun'ei; Takarada, Takuya et al. (2022). “A trio of giant planets orbiting evolved star HD 184010”. Publications of the Astronomical Society of Japan 74 (6): 1309-1328. arXiv:2209.09426. Bibcode2022PASJ...74.1309T. doi:10.1093/pasj/psac070. 
  131. ^ Staab, D.; Haswell, C. A.; Barnes, J. R. et al. (2020). “A compact multi-planet system around a bright nearby star from the Dispersed Matter Planet Project”. Nature Astronomy 4: 399-407. arXiv:1912.10792. Bibcode2020NatAs...4..399S. doi:10.1038/s41550-019-0974-x. 
  132. ^ Leleu, A.; Alibert, Y.; Hara, N. C. et al. (2021). “Six transiting planets and a chain of Laplace resonances in TOI-178”. Astronomy and Astrophysics 649: A26. arXiv:2101.09260. Bibcode2021A&A...649A..26L. doi:10.1051/0004-6361/202039767. ISSN 0004-6361. 
  133. ^ Garai, Z.; Osborn, H. P.; Gandolfi, D. et al. (2023). Astronomy and Astrophysics 674: 14. arXiv:2306.04468. Bibcode2023A&A...674A..44G. doi:10.1051/0004-6361/202345943. A44. 
  134. ^ Cointepas, M.; Bouchy, F.; Almenara, J. M. et al. (2024). “TOI-663: A newly discovered multi-planet system with three transiting mini-Neptunes orbiting an early M star”. Astronomy and Astrophysics 685: 18. Bibcode2024A&A...685A..19C. doi:10.1051/0004-6361/202346899. A19. 
  135. ^ Hoyer, S.; Bonfanti, A.; Leleu, A. et al. (2022). “Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet”. Astronomy and Astrophysics 668: A117. arXiv:2210.08912. Bibcode2022A&A...668A.117H. doi:10.1051/0004-6361/202243720. 
  136. ^ Dressing, Courtney D.; Vanderburg, Andrew; Schlieder, Joshua E. et al. (2017). “Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. II. Planetary Systems Observed During Campaigns 1-7”. The Astronomical Journal 154 (5). arXiv:1703.07416. Bibcode2017AJ....154..207D. doi:10.3847/1538-3881/aa89f2. 207. 
  137. ^ a b Mann, Andrew W.; Dupuy, Trent; Muirhead, Philip S.; Johnson, Marshall (2017). “The Gold Standard: Accurate Stellar and Planetary Parameters for Eight Kepler M Dwarf Systems Enabled by Parallaxes”. The Astronomical Journal 153 (6): 267. arXiv:1705.01545. Bibcode2017AJ....153..267M. doi:10.3847/1538-3881/aa7140. 
  138. ^ Piaulet, Caroline; Benneke, Björn; Almenara, Jose M. et al. (2022). “Evidence for the volatile-rich composition of a 1.5-R planet”. Nature Astronomy 7: 206-222. arXiv:2212.08477. doi:10.1038/s41550-022-01835-4. 
  139. ^ David, Trevor J.; Crossfield, Ian J. M.; Benneke, Björn et al. (2018). “Three Small Planets Transiting the Bright Young Field Star K2-233”. The Astronomical Journal 155 (5): 9. arXiv:1803.05056. Bibcode2018AJ....155..222D. doi:10.3847/1538-3881/aabde8. 222. 
  140. ^ Damasso, M.; Rodrigues, J.; Castro-González, A. et al. (2023). “A compact multi-planet system transiting HIP 29442 (TOI-469) discovered by TESS and ESPRESSO. Radial velocities lead to the detection of transits with low signal-to-noise ratio”. Astronomy and Astrophysics 679: 22. arXiv:2308.13310. Bibcode2023A&A...679A..33D. doi:10.1051/0004-6361/202347240. A33. 
  141. ^ Diez Alonso, E.; Suarez Gomez, S. L.; Gonzalez Hernandez, J. I. et al. (2018). “A system of three transiting super-Earths in a cool dwarf star”. Monthly Notices of the Royal Astronomical Society Letters 476 (1): L50–L54. arXiv:1801.06249. doi:10.1093/mnrasl/sly040. 
  142. ^ Lam, K. W. F.; Cabrera, J.; Hooton, M. J. et al. (2023). Monthly Notices of the Royal Astronomical Society 519 (1): 1437-1451. arXiv:2212.04307. Bibcode2023MNRAS.519.1437L. doi:10.1093/mnras/stac3639. 
  143. ^ Wells, R.; Poppenhaeger, K.; Watson, C. A. (2018). “Three small transiting planets around the M-dwarf host star LP 358-499”. Monthly Notices of the Royal Astronomical Society Letters 473 (1): L131-L135. arXiv:1709.01025. Bibcode2018MNRAS.473L.131W. doi:10.1093/mnrasl/slx171. 
  144. ^ Wells, R.; Poppenhaeger, K.; Watson, C. A. (2019). “Validation of a temperate fourth planet in the K2-133 multiplanet system”. Monthly Notices of the Royal Astronomical Society 487 (2): 1865-1873. arXiv:1905.05206. Bibcode2019MNRAS.487.1865W. doi:10.1093/mnras/stz1334. 
  145. ^ Rodriguez, Joseph E.; Becker, Juliette C.; Eastman, Jason D.; Hadden, Sam (2018). “A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet”. The Astronomical Journal 156 (5): 20. arXiv:1806.08368. Bibcode2018AJ....156..245R. doi:10.3847/1538-3881/aae530. 245. 
  146. ^ a b c Christiansen, Jessie L.; Bhure, Sakhee; Zink, Jon K. et al. (2022). “Scaling K2. V. Statistical Validation of 60 New Exoplanets From K2 Campaigns 2-18”. The Astronomical Journal 163 (6): 34. arXiv:2203.02087. Bibcode2022AJ....163..244C. doi:10.3847/1538-3881/ac5c4c. 244. 
  147. ^ Lacedelli, G.; Malavolta, L.; Borsato, L. et al. (2021). “An unusually low density ultra-short period super-Earth and three mini-Neptunes around the old star TOI-561”. Monthly Notices of the Royal Astronomical Society 501 (3): 4148–4166. arXiv:2009.02332. Bibcode2021MNRAS.501.4148L. doi:10.1093/mnras/staa3728. 
  148. ^ Dai, Fei; Masuda, Kento; Beard, Corey et al. (2023). “TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain”. The Astronomical Journal 165 (2): 37. arXiv:2210.09283. Bibcode2023AJ....165...33D. doi:10.3847/1538-3881/aca327. 33. 
  149. ^ Fridlund, M.; Livingston, J.; Gandolfi, D. et al. (2020). “The TOI-763 system: sub-Neptunes orbiting a Sun-like star”. Monthly Notices of the Royal Astronomical Society 498 (3): 4503-4517. arXiv:2008.12535. Bibcode2020MNRAS.498.4503F. doi:10.1093/mnras/staa2502. 
  150. ^ Muirhead, Philip S.; Mann, Andrew W.; Vanderburg, Andrew; Morton, Timothy D. (2015). “Kepler-445, Kepler-446 and the Occurrence of Compact Multiples Orbiting Mid-M Dwarf Stars”. The Astrophysical Journal 801 (1): 15. arXiv:1501.01305. Bibcode2015ApJ...801...18M. doi:10.1088/0004-637X/801/1/18. 18. 
  151. ^ Fukui, A.; Korth, J.; Livingston, J. H. et al. (2021). “TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair”. The Astronomical Journal 162 (4): 23. arXiv:2107.05430. Bibcode2021AJ....162..167F. doi:10.3847/1538-3881/ac13a5. 167. 
  152. ^ Santerne, A.; Brugger, B.; Armstrong, D. J. et al. (2018). “An Earth-sized exoplanet with a Mercury-like composition”. Nature Astronomy 2 (5): 393–400. Bibcode2018NatAs...2..393S. doi:10.1038/s41550-018-0420-5. 
  153. ^ Santerne, A.; Malavolta, L.; Kosiarek, M. R.; et al. (2019). "An extremely low-density and temperate giant exoplanet". arXiv:1911.07355v1 [astro-ph.EP]。
  154. ^ Feinstein, Adina D.; David, Trevor J.; Montet, Benjamin T. et al. (2022). “V1298 Tau with TESS: Updated Ephemerides, Radii, and Period Constraints from a Second Transit of V1298 Tau E”. The Astrophysical Journal Letters 925 (1): L2. arXiv:2111.08660. Bibcode2022ApJ...925L...2F. doi:10.3847/2041-8213/ac4745. 
  155. ^ David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E. (2019). “A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau”. The Astronomical Journal 158 (2): 79. arXiv:1902.09670. Bibcode2019AJ....158...79D. doi:10.3847/1538-3881/ab290f. ISSN 0004-6256. 
  156. ^ Quinn, Samuel N.; Becker, Juliette C.; Rodriguez, Joseph E. et al. (2019). “Near-resonance in a System of Sub-Neptunes from TESS”. The Astronomical Journal 158 (5): 16. arXiv:1901.09092. Bibcode2019AJ....158..177Q. doi:10.3847/1538-3881/ab3f2b. 177. 
  157. ^ Heller, René; Hippke, Michael; Rodenbeck, Kai (2019). “Transit least-squares survey. II. Discovery and validation of 17 new sub- to super-Earth-sized planets in multi-planet systems from K2”. Astronomy and Astrophysics 627: 10. arXiv:1905.09038. Bibcode2019A&A...627A..66H. doi:10.1051/0004-6361/201935600. A66. 
  158. ^ Adams, Elisabeth R.; Jackson, Brian; Johnson, Samantha et al. (2021). The Planetary Science Journal 2 (4): 30. arXiv:2011.11698. Bibcode2021PSJ.....2..152A. doi:10.3847/PSJ/ac0ea0. 152. 
  159. ^ K2-302 Overview”. NASA Exoplanet Archive. IPAC/Caltech. 2024-12-●●閲覧。
  160. ^ Jean Schneider (2024年7月12日). “Planet K2-302 d”. The Extrasolar Planet Encyclopaedia. Paris Observatory. 2024-12-●●閲覧。
  161. ^ Hedges, Christina; Saunders, Nicholas; Barentsen, Geert et al. (2019). “Four Small Planets Buried in K2 Systems: What Can We Learn for TESS?”. The Astrophysical Journal Letters 880 (1): 10. arXiv:1907.08244. Bibcode2019ApJ...880L...5H. doi:10.3847/2041-8213/ab2a74. L5. 
  162. ^ Trifonov, Trifon; Wollbold, Anna; Kürster, Martin et al. (2022). “A New Third Planet and the Dynamical Architecture of the HD 33142 Planetary System”. The Astronomical Journal 164 (4): 156. arXiv:2206.03899. Bibcode2022AJ....164..156T. doi:10.3847/1538-3881/ac7ce0. ISSN 0004-6256. 
  163. ^ Newton, Elisabeth R.; Mann, Andrew W.; Kraus, Adam L. et al. (2021). “TESS Hunt for Young and Maturing Exoplanets (THYME). IV. Three Small Planets Orbiting a 120 Myr Old Star in the Pisces-Eridanus Stream”. The Astronomical Journal 161 (2): 20. arXiv:2102.06049. Bibcode2021AJ....161...65N. doi:10.3847/1538-3881/abccc6. 65. 
  164. ^ Grieves, N.; Bouchy, F.; Armstrong, D. J.; et al. (23 June 2024). "Refining the WASP-132 multi-planetary system: discovery of a cold giant planet and mass measurement of a hot super-Earth". arXiv:2406.15986v1 [astro-ph.EP]。
  165. ^ Hirano, Teruyuki; Dai, Fei; Gandolfi, Davide et al. (2015). “Exoplanets around Low-mass Stars Unveiled by K2”. The Astronomical Journal 155 (3): 23. arXiv:1710.03239. Bibcode2018AJ....155..127H. doi:10.3847/1538-3881/aaa9c1. 127. 
  166. ^ a b c d Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W. et al. (2018). “275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0-10”. The Astronomical Journal 155 (3): 25. arXiv:1802.05277. Bibcode2018AJ....155..136M. doi:10.3847/1538-3881/aaadff. 136. 
  167. ^ Dransfield, Georgina; Triaud, Amaury H. M. J.; Guillot, Tristan et al. (2022). “HD 28109 hosts a trio of transiting Neptunian planets including a near-resonant pair, confirmed by ASTEP from Antarctica”. Monthly Notices of the Royal Astronomical Society 515 (1): 1328-1345. arXiv:2205.09046. Bibcode2022MNRAS.515.1328D. doi:10.1093/mnras/stac1383. 
  168. ^ Damasso, M.; Biazzo, K.; Bonomo, A. S. et al. (2015). “The GAPS programme with HARPS-N at TNG. V. A comprehensive analysis of the XO-2 stellar and planetary systems”. Astronomy and Astrophysics 575 (A111). arXiv:1501.01424. Bibcode2015A&A...575A.111D. doi:10.1051/0004-6361/201425332. 
  169. ^ Ruggieri, A.; Desidera, S.; Biazzo, K. et al. (2024). “The GAPS Programme at TNG. LIII. New insights on the peculiar XO-2 system”. Astronomy and Astrophysics 684 (A116): 16. arXiv:2401.17876. Bibcode2024A&A...684A.116R. doi:10.1051/0004-6361/202348042. 
  170. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv Morton, Timothy D.; Bryson, Stephen T.; Coughlin, Jeffrey L. et al. (2016). “False Positive Probabilities for all Kepler Objects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives”. The Astrophysical Journal 822 (2): 15. arXiv:1605.02825. Bibcode2016ApJ...822...86M. doi:10.3847/0004-637X/822/2/86. 86. 
  171. ^ Palle, E.; Nowak, G.; Luque, R. et al. (2019). “Detection and Doppler monitoring of K2-285 (EPIC 246471491), a system of four transiting planets smaller than Neptune”. Astronomy and Astrophysics 623: 10. arXiv:1808.00575. Bibcode2019A&A...623A..41P. doi:10.1051/0004-6361/201834001. A41. 
  172. ^ Petigura, Erik A.; Sinukoff, Evan; Lopez, Eric D. et al. (2017). “Four Sub-Saturns with Dissimilar Densities: Windows into Planetary Cores and Envelopes”. The Astronomical Journal 153 (4). arXiv:1702.0001. Bibcode2017AJ....153..142P. doi:10.3847/1538-3881/aa5ea5. 
  173. ^ Léger, A.; Rouan, D.; Schneider, J. et al. (2009). “Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius”. Astronomy and Astrophysics 506 (1): 287–302. arXiv:0908.0241. Bibcode2009A&A...506..287L. doi:10.1051/0004-6361/200911933. 
  174. ^ Anna John, Ancy; Collier Cameron, Andrew; Wilson, Thomas G. (2022). “The impact of two non-transiting planets and stellar activity on mass determinations for the super-Earth CoRoT-7b”. Monthly Notices of the Royal Astronomical Society 515 (3): 3975–3995. arXiv:2206.14216. Bibcode2022MNRAS.515.3975J. doi:10.1093/mnras/stac1814. 
  175. ^ Turtelboom, Emma V.; Weiss, Lauren M.; Dressing, Courtney D. et al. (2022). “The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246”. The Astronomical Journal 163 (6): 25. arXiv:2204.11895. Bibcode2022AJ....163..293T. doi:10.3847/1538-3881/ac69e5. 293. 
  176. ^ MacDougall, Mason G.; Petigura, Erik A.; Gilbert, Gregory J. et al. (2023). “The TESS-Keck Survey. XV. Precise Properties of 108 TESS Planets and Their Host Stars”. The Astronomical Journal 166 (1): 17. arXiv:2306.00251. Bibcode2023AJ....166...33M. doi:10.3847/1538-3881/acd557. 33. 
  177. ^ a b Torres, Guillermo; Kipping, David M.; Fressin, Francois et al. (2015). “Validation of 12 Small Kepler Transiting Planets in the Habitable Zone”. The Astrophysical Journal 800 (2): 24. arXiv:1501.01101. Bibcode2015ApJ...800...99T. doi:10.1088/0004-637X/800/2/99. 99. 
  178. ^ Sinukoff, Evan; Howard, Andrew W.; Petigura, Erik A. et al. (2016). “Eleven Multiplanet Systems from K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths”. The Astrophysical Journal 827 (1): 27. arXiv:1511.09213. Bibcode2016ApJ...827...78S. doi:10.3847/0004-637X/827/1/78. 78. 
  179. ^ a b de Leon, J. P.; Livingston, J.; Endl, M. et al. (2021). “37 new validated planets in overlapping K2 campaigns”. Monthly Notices of the Royal Astronomical Society 508 (1): 195-218. arXiv:2108.05621. Bibcode2021MNRAS.508..195D. doi:10.1093/mnras/stab2305. 
  180. ^ Crossfield, Ian J. M.; Ciardi, David R.; Petigura, Erik A. et al. (2016). “197 Candidates and 104 Validated Planets in K2’s First Five Fields”. The Astrophysical Journal Supplement Series 226 (1): 20. arXiv:1607.05263. Bibcode2016ApJS..226....7C. doi:10.3847/0067-0049/226/1/7. 7. 
  181. ^ Lopez, T. A.; Barros, S. C. C.; Santerne, A.; Deleuil, M. (2019). “Exoplanet characterisation in the longest known resonant chain: the K2-138 system seen by HARPS”. Astronomy and Astrophysics 631: A90. arXiv:1909.13527. Bibcode2019A&A...631A..90L. doi:10.1051/0004-6361/201936267. ISSN 0004-6361. 
  182. ^ Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert; Lintott, Chris J. (2018). “The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists”. The Astronomical Journal 155 (2): 57. arXiv:1801.03874. Bibcode2018AJ....155...57C. doi:10.3847/1538-3881/aa9be0. ISSN 1538-3881. 
  183. ^ Silva Aguirre, V.; Davies, G. R.; Basu, S. et al. (2015). “Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology”. Monthly Notices of the Royal Astronomical Society 452 (2): 2127–2148. arXiv:1504.07992. Bibcode2015MNRAS.452.2127S. doi:10.1093/mnras/stv1388. 
  184. ^ Bakos, G. Á.; Howard, A. W.; Noyes, R. W. et al. (2009). “HAT-P-13b,c: A Transiting Hot Jupiter with a Massive Outer Companion on an Eccentric Orbit”. The Astrophysical Journal 707 (1): 446–456. arXiv:0907.3525. Bibcode2009ApJ...707..446B. doi:10.1088/0004-637X/707/1/446. 
  185. ^ Bryant, Edward M.; Bayliss, Daniel (2022). “Revisiting WASP-47 with ESPRESSO and TESS”. The Astronomical Journal 163 (5): 15. arXiv:2202.12747. Bibcode2022AJ....163..197B. doi:10.3847/1538-3881/ac58ff. 197. 
  186. ^ Nespral, D.; Gandolfi, D.; Deeg, H. J. et al. (2017). “Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations”. Astronomy and Astrophysics 601 (A128): 8. arXiv:1604.01265. Bibcode2017A&A...601A.128N. doi:10.1051/0004-6361/201628639. 
  187. ^ Sinukoff, Evan; Howard, Andrew W.; Petigura, Erik A. et al. (2016). “Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths”. The Astrophysical Journal 827 (1): 27. arXiv:1511.09213. Bibcode2016ApJ...827...78S. doi:10.3847/0004-637X/827/1/78. 
  188. ^ Borucki, William J.; Agol, Eric; Fressin, Francois et al. (2013). “Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone”. Science Express 340 (6132): 587–590. arXiv:1304.7387. Bibcode2013Sci...340..587B. doi:10.1126/science.1234702. PMID 23599262. 
  189. ^ Hidalgo, D.; Pallé, E.; Alonso, R. et al. (2020). “Three planets transiting the evolved star EPIC 249893012: a hot 8.8-M⊕ super-Earth and two warm 14.7 and 10.2-M⊕ sub-Neptunes”. Astronomy and Astrophysics 636: 13. arXiv:2002.01755. Bibcode2020A&A...636A..89H. doi:10.1051/0004-6361/201937080. A89. 
  190. ^ Vítková, Michaela; Brahm, Rafael; Trifonov, Trifon; et al. (7 December 2024). "TOI-4504: Exceptionally large Transit Timing Variations induced by two resonant warm gas giants in a three planet system". arXiv:2412.05609v1 [astro-ph.EP]。
  191. ^ Kipping, D. M.; Torres, G.; Henze, C. et al. (2016). “A Transiting Jupiter Analog”. The Astrophysical Journal 820 (2): 15. arXiv:1603.00042. Bibcode2016ApJ...820..112K. doi:10.3847/0004-637X/820/2/112. 112. 
  192. ^ a b Adams, Elisabeth R.; Jackson, Brian; Johnson, Samantha et al. (2021). “Ultra-short-period Planets in K2. III. Neighbors are Common with 13 New Multiplanet Systems and 10 Newly Validated Planets in Campaigns 0-8 and 10”. The Planetary Science Journal 2 (4): 30. arXiv:2011.1169. doi:10.3847/PSJ/ac0ea08. 152. 
  193. ^ Fox, Chris; Wiegert, Paul (2018). “A new planet in the Kepler-159 system from transit timing variations”. Monthly Notices of the Royal Astronomical Society 482 (1): 639–648. arXiv:1810.06486. Bibcode2019MNRAS.482..639F. doi:10.1093/mnras/sty2738. 
  194. ^ Shallue, C. J.; Vanderburg, A. (2018). “Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90”. The Astrophysical Journal 155 (2): 94. arXiv:1712.05044. Bibcode2018AJ....155...94S. doi:10.3847/1538-3881/aa9e09. 
  195. ^ Weiss, Lauren M.; Fabrycky, Daniel C.; Agol, Eric et al. (2020). “The Discovery of the Long-Period, Eccentric Planet Kepler-88 d and System Characterization with Radial Velocities and Photodynamical Analysis”. The Astronomical Journal 159 (5): 242. arXiv:1909.02427. Bibcode2020AJ....159..242W. doi:10.3847/1538-3881/ab88ca. ISSN 1538-3881. 
  196. ^ Esmer, Ekrem Murat; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022). “Detection of two additional circumbinary planets around Kepler-451”. Monthly Notices of the Royal Astronomical Society 511 (4): 5207–5216. arXiv:2202.02118. Bibcode2022MNRAS.511.5207E. doi:10.1093/mnras/stac357. 
  197. ^ Cochran, William D.; Fabrycky, Daniel C.; Torres, Guillermo et al. (2011). “Kepler 18-b, c, and d: A System Of Three Planets Confirmed by Transit Timing Variations, Lightcurve Validation, Spitzer Photometry and Radial Velocity Measurements”. The Astrophysical Journal Supplement Series 197 (1): 7. arXiv:1110.0820. Bibcode2011ApJS..197....7C. doi:10.1088/0067-0049/197/1/7. 
  198. ^ Hirano, Teruyuki; Narita, Norio; Sato, Bun'ei et al. (2012). “Planet-Planet Eclipse and the Rossiter-McLaughlin Effect of a Multiple Transiting System: Joint Analysis of the Subaru Spectroscopy and the Kepler Photometry”. The Astrophysical Journal 759 (2): L36. arXiv:1209.4362. Bibcode2012ApJ...759L..36H. doi:10.1088/2041-8205/759/2/L36. 
  199. ^ Livingston, John H.; Crossfield, Ian J. M.; Petigura, Erik A. et al. (2018). “Sixty Validated Planets from K2 Campaigns 5-8”. The Astronomical Journal 156 (6): 30. arXiv:1810.04074. Bibcode2018AJ....156..277L. doi:10.3847/1538-3881/aae778. 277. 
  200. ^ Borsato, L.; Malavolta, L.; Piotto, G. et al. (2019). “HARPS-N radial velocities confirm the low densities of the Kepler-9 planets”. Monthly Notices of the Royal Astronomical Society 484 (3): 3233–3243. arXiv:1901.05471. Bibcode2019MNRAS.484.3233B. doi:10.1093/mnras/stz181. 
  201. ^ Bedell, Megan; Bean, Jacob L.; Meléndez, Jorge et al. (2017). “Kepler-11 is a Solar Twin: Revising the Masses and Radii of Benchmark Planets via Precise Stellar Characterization”. The Astrophysical Journal 839 (2): 94. arXiv:1611.06239. Bibcode2017ApJ...839...94B. doi:10.3847/1538-4357/aa6a1. 
  202. ^ Konacki, M.; Wolszczan, A. (2003). “Masses and Orbital Inclinations of Planets in the PSR B1257+12 System”. The Astrophysical Journal 591 (2): L147–L150. arXiv:astro-ph/0305536. Bibcode2003ApJ...591L.147K. doi:10.1086/377093. 
  203. ^ Saad-Olivera, Ximena; Nesvorný, David; Kipping, David M.; Roig, Fernando (2017). “Masses of Kepler-46b, c from Transit Timing Variations”. The Astronomical Journal 153 (4): 198. arXiv:1704.01541. Bibcode2017AJ....153..198S. doi:10.3847/1538-3881/aa64e0. 
  204. ^ Huang, Chelsea; Wu, Yanqin; Triaud, Amaury H. M. J. (2016). “Warm Jupiters Are Less Lonely Than Hot Jupiters: Close Neighbors”. The Astrophysical Journal 825 (2): 98. arXiv:1601.05095. Bibcode2016ApJ...825...98H. doi:10.3847/0004-637X/825/2/98. 
  205. ^ Libby-Roberts, Jessica E.; Berta-Thompson, Zachory K.; Desert, Jean-Miche et al. (2020). “The Featureless Transmission Spectra of Two Super-puff Planets”. The Astronomical Journal 159 (2): 57. arXiv:1910.12988. Bibcode2020AJ....159...57L. doi:10.3847/1538-3881/ab5d36. 
  206. ^ Masuda, Kento; Libby-Roberts, Jessica E.; Livingston, John H.; et al. (2 October 2024). "A Fourth Planet in the Kepler-51 System Revealed by Transit Timing Variations". arXiv:2410.01625v1 [astro-ph.EP]。
  207. ^ Gray, R. O.; Corbally, C. J.; De Cat, P. et al. (2016). “LAMOST Observations in the Kepler Field: Spectral Classification with the MKCLASS Code”. The Astronomical Journal 151 (1): 13. Bibcode2016AJ....151...13G. doi:10.3847/0004-6256/151/1/13. 
  208. ^ Cabrera, J.; Csizmadia, Sz.; Lehmann, H. et al. (2014). “The planetary system to KIC 11442793: A compact analogue to the Solar System”. The Astrophysical Journal 781 (1): 18. arXiv:1310.6248. Bibcode2014ApJ...781...18C. doi:10.1088/0004-637X/781/1/18. 
  209. ^ Shallue, Christopher J.; Vanderburg, Andrew (2018). “Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90”. The Astronomical Journal 155: 94. arXiv:1712.05044. Bibcode2018AJ....155...94S. doi:10.3847/1538-3881/aa9e09. 
  210. ^ Armstrong, David J.; Gamper, Jevgenij; Damoulas, Theodoros (2021). “Exoplanet validation with machine learning: 50 new validated Kepler planets”. Monthly Notices of the Royal Astronomical Society 504 (4): 5327-5344. arXiv:2008.10516. Bibcode2021MNRAS.504.5327A. doi:10.1093/mnras/staa2498. 
  211. ^ Leleu, A.; Delisle, J.-B.; Udry, S. et al. (2023). “Removing biases on the density of sub-Neptunes characterised via transit timing variations. Update on the mass-radius relationship of 34 Kepler planets”. Astronomy and Astrophysics 669: A117. arXiv:2207.07456. Bibcode2023A&A...669A.117L. doi:10.1051/0004-6361/202244132. 
  212. ^ Ford, Eric B.; Fabrycky, Daniel C.; Steffen, Jason H. et al. (2012). “Transit Timing Observations Fromkepler. Ii. Confirmation of Two Multiplanet Systems Via a Non-Parametric Correlation Analysis”. The Astrophysical Journal 750 (2): 113. arXiv:1201.5409. Bibcode2012ApJ...750..113F. doi:10.1088/0004-637X/750/2/113. 
  213. ^ Sanchis-Ojeda, Roberto; Fabrycky, Daniel C.; Winn, Joshua N. et al. (2012). “Alignment of the stellar spin with the orbits of a three-planet system”. Nature 487 (7408): 449–453. arXiv:1207.5804. Bibcode2012Natur.487..449S. doi:10.1038/nature11301. PMID 22836999. 
  214. ^ Valizadegan, Hamed; Martinho, Miguel J. S.; Jenkins, Jon M. et al. (2023). “Multiplicity Boost of Transit Signal Classifiers: Validation of 69 New Exoplanets using the Multiplicity Boost of ExoMiner”. The Astronomical Journal 166 (1): 28. arXiv:2305.02470. Bibcode2023AJ....166...28V. doi:10.3847/1538-3881/acd344. 
  215. ^ Fellay, L.; Buldgen, G.; Eggenberger, P. et al. (2021). “Asteroseismology of evolved stars to constrain the internal transport of angular momentum”. Astronomy and Astrophysics 654 (A133). arXiv:2108.02670. Bibcode2021A&A...654A.133F. doi:10.1051/0004-6361/202140518. 
  216. ^ Huber, Daniel; Carter, Joshua; Barbieri, Mauro et al. (2013). “Stellar Spin-Orbit Misalignment in a Multiplanet System”. Science 342 (6156): 331–334. arXiv:1310.4503. Bibcode2013Sci...342..331H. doi:10.1126/science.1242066. PMID 24136961. 
  217. ^ a b Masuda, Kento; Winn, Joshua N.; Kawahara, Hajime (2020). “Mutual Orbital Inclinations between Cold Jupiters and Inner Super-Earths”. The Astronomical Journal 159 (2): 38. arXiv:1912.00387. Bibcode2020AJ....159...38M. doi:10.3847/1538-3881/ab5c1d. 
  218. ^ Kepler-154 Overview”. NASA Exoplanet Archive. IPAC/Caltech. 2024-12-●●閲覧。
  219. ^ Jean Schneider (2019年12月3日). “Planet Kepler-154 g”. The Extrasolar Planet Encyclopaedia. Paris Observatory. 2024-12-●●閲覧。
  220. ^ Heller, René; Hippke, Michael; Freudenthal, Jantje et al. (2020). “Transit least-squares survey”. Astronomy and Astrophysics 638: A10. arXiv:2006.02123. Bibcode2020A&A...638A..10H. doi:10.1051/0004-6361/201936929. 
  221. ^ Orosz, Jerome A.; Welsh, William F.; Haghighipour, Nader et al. (2019). “Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System”. The Astrnomical Journal 157 (5): 174. arXiv:1904.07255. Bibcode2019AJ....157..174O. doi:10.3847/1538-3881/ab0ca0. 
  222. ^ Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A. et al. (2012). “Kepler-47: A Transiting Circumbinary Multi-Planet System”. Science 337 (6101): 1511–1514. arXiv:1208.5489. Bibcode2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. 
  223. ^ Valizadegan, Hamed; Martinho, Miguel J. S.; Wilkens, Laurent S. et al. (2022). “ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets”. The Astronomical Journal 926 (2): 120. arXiv:2111.10009. Bibcode2022ApJ...926..120V. doi:10.3847/1538-4357/ac4399. 
  224. ^ Sikora, James; Rowe, Jason; Jontof-Hutter, Daniel; Lissauer, Jack J. (2022). “Refining the Masses and Radii of the Star Kepler-33 and its Five Transiting Planets”. The Astronomical Journal 164 (6): 242. arXiv:2211.00703. Bibcode2022AJ....164..242S. doi:10.3847/1538-3881/ac98c4. 
  225. ^ Lissauer, Jack J.; Rowe, Jason F.; Jontof-Hutter, Daniel et al. (2024). “Updated Catalog of Kepler Planet Candidates: Focus on Accuracy and Orbital Periods”. The Planetary Science Journal 5 (6): 152. arXiv:2311.00238. Bibcode2024PSJ.....5..152L. doi:10.3847/PSJ/ad0e6e.  [1]にてデータ利用可能

関連項目

[編集]