「三角関数」の版間の差分
編集の要約なし |
パンの袋を留めるやつ (会話 | 投稿記録) == 日本の中等教育における正弦関数の極限 == の節を追加 |
||
249行目: | 249行目: | ||
*余弦公式: cos ''α'' = cos ''β'' cos ''γ'' + sin ''β'' sin γ cos ''a'' |
*余弦公式: cos ''α'' = cos ''β'' cos ''γ'' + sin ''β'' sin γ cos ''a'' |
||
*正弦余弦公式: sin ''a'' cos ''β'' = cos ''b'' sin ''c'' − sin ''b'' cos ''c'' cos ''α'' |
*正弦余弦公式: sin ''a'' cos ''β'' = cos ''b'' sin ''c'' − sin ''b'' cos ''c'' cos ''α'' |
||
== 日本の中等教育における正弦関数の極限 == |
|||
日本の中等教育について、「一般的に教科書に載っている<ref>{{Cite book|和書|author=[[大矢雅則]]; [[岡部恒治]] ほか13名 |authorlink= |title=新編 数学Ⅲ |origdate= |origyear= |url= |format= |accessdate= |edition=改訂版 |date=2010-01-10 |publisher=数研出版株式会社 |location=東京都千代田区神田小川町2-3-3 |language= |id= |isbn=978-4-410-80166-2 |oclc=676686067 |ncid=BA89906770 |page=53 |chapter= |chapterurl= |quote= |ref=}}</ref><ref>{{Cite book|和書|author=[[飯高茂]]; 松本幸夫 ほか22名 |authorlink= |title=数学Ⅲ |origdate= |origyear= |url= |format= |accessdate= |edition= |date=2008-02-10 |publisher=東京書籍株式会社 |location=東京都北区堀船2-17-1 |language= |id= |isbn=4-487-15513-4 |oclc=76931848 |ncid=BA71854010 |page=49 |chapter= |chapterurl= |quote= |ref=}}ほか</ref>、極限の値 |
|||
:<math>\lim_{x \to 0}\frac{\sin x}{x}=1</math> |
|||
の証明は循環論法であるため論理が破綻している」という主張がなされることがある<ref name="A">{{Cite web |url=http://sci-tech.ksc.kwansei.ac.jp/~kawanaka/sinx.pdf |title=循環論法で証明になっていない |accessdate=2014-01-22 |author=川中宣明 |format=PDF |publisher= |page=1 |language=}}</ref>。ここで言う「教科書に載っている証明」とは、中心角''x''ラジアンの扇形の面積を2つの三角形の面積ではさみ、いわゆるはさみうちの原理から証明するものであるが、ここで問題となるのは、証明に面積が利用されていることである<ref name="A" />(時にはラジアンが利用されていることも問題とされることもある<ref name="A" />)。ここで面積は積分によって定義されるものであるとすると、特に扇形の面積を求めるには三角関数の積分が必要となり、三角関数の積分をするには三角関数の微分ができねばならず、三角関数を微分するにはもとの極限が必要になる。このことが循環論法と呼ばれているのである。 |
|||
この循環論法を回避する方法として正弦関数と余弦関数を上述のような無限級数で定義する方法がある<ref name="A" />。ただし、これも高校範囲を超えているものと思われる。 |
|||
== 参考文献 == |
|||
{{Reflist}} |
|||
== 関連項目 == |
== 関連項目 == |
2014年1月25日 (土) 10:00時点における版
三角関数(さんかくかんすう、英: trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を明らかにする関数の族および、それらを拡張して得られる関数の総称である。
定義
直角三角形による定義
直角三角形において、1つの鋭角の大きさが決まれば、三角形の内角の和は180°であることから他の1つの鋭角の大きさも決まり、3辺の比も決まる。ゆえに、角度に対して辺比の値を与える関数を考えることができる。
∠C を直角とする直角三角形ABC において、AB = h, BC = a, CA = b とおく。∠A = θ に対して h : a : b が決まることから、
という6つの値が定まる。それぞれ正弦(sine(サイン))・余弦(cosine(コサイン))・正接(tangent(タンジェント))・余割(cosecant(コセカント))・正割(secant(セカント))・余接(cotangent(コタンジェント))と呼び、まとめて三角比と呼ばれる。ただし cosec は長いので csc と略記することも多い。また、余弦、余割、余接は余角(角を90°から引いた角)のそれぞれ正弦、正割、正接に等しい。三角比は平面三角法に用いられ、巨大な物の大きさや遠方までの距離を計算する際の便利な道具となる。角度 θ の単位は、通常度またはラジアンである。
単位円による定義
実数 t に対して、2次元ユークリッド空間 R2 における単位円 x2 + y2 = 1 上の点P(x, y) を ∠xOP = t(反時計回りを正の向きとする)を満たすように取り、
と定義する。順に正弦関数(sine; サイン)・余弦関数(cosine; コサイン)・正接関数(tangent; タンジェント)と呼び、これらを総称して三角関数と呼ぶ。さらにこれらの逆数
を順に余割関数(cosecant; コセカント)・正割関数(secant; セカント)・余接関数(cotangent; コタンジェント)と呼び、これらを総称して割三角関数(かつさんかくかんすう)と呼ぶ。これらを含めて三角関数と呼ぶこともある。
級数による定義
角度、辺の長さといった幾何学的な概念に依存しないために、級数で定義することもできる。収束半径を求めることより、以下の級数は収束円上で収束する。
z を複素数、Bn をベルヌーイ数、En をオイラー数とする。
歴史
一定の半径の円における中心角に対する弦と弧の長さの関係は、測量や天文学の要請によって古代から研究されてきた。
古代ギリシャ
古代ギリシャにおいて、円と球に基づく宇宙観に則った天文学研究から、ヒッパルコスにより一定の半径の円における中心角に対する弦の長さが表にまとめられたもの(正弦表)が作られた。プトレマイオスの『アルマゲスト』にも正弦表が記載されている。
古代インド
正弦表は後にインドに伝わり、弦の長さは半分でよいという考えから5世紀頃には半弦 ardha-jiva(つまり現在の sine の意味の正弦)の長さをより精確にまとめたものが作成された(『アールヤバタ』)。ardha は"半分" jiva は"弦"の意味で、当時のインドではこの半弦(現在の sine の意味の正弦)は単に jiva と略された。また、弦の長さを半分にして直角三角形を当てはめたことから派生して余角 (complementary angle) の考えが生まれ、“余角 (co-angle) の正弦 (sine)”という考えから余弦 (cosine) の考えが生まれた。余弦の値もこの頃に詳しく調べられている。(*co- は complementary の略で、補完的・補足的という意味の接頭語として用いる)
イスラム帝国
8世紀頃イスラム帝国へ伝わったときに jaib(入り江)と変化した。10世紀のアッバース朝時代にシリアの数学者アル・バッターニが正弦法の導入、コタンジェント表の計算、球面三角法(球面幾何学)の定理を提唱した。ブワイフ朝のバグダードの数学者アブル・ワファーがタンジェントを導入した(al-Marwazi説もある)。
ヨーロッパ
一説では12世紀にチェスターのロバートがラテン語に翻訳した際、正弦を sinus rectus と意訳し(sinusはラテン語で「湾」のこと)、現在の sine になったという。円や弦といった概念からは独立に、三角比を辺の比として角と長さの関係と捉えたのは16世紀オーストリアのゲオルク・レティクスであるといわれる。余弦を co-sine と呼んだり、sin, cos という記号が使われるようになったりしたのは 17世紀になってからであり、それが定着するのは 18世紀オイラーの頃である。一般角に対する三角関数を定義したのはオイラーである。
三角関数の性質
周期性
x 軸の正の部分となす角は
一般角 t が 2π 進めば点 P(cos t, sin t) は単位円上を1周し元の位置に戻る。従って、
すなわち cos, sin は周期 2π の周期関数である。
ほぼ同様に、tan, cot は周期 π の周期関数、sec, csc は周期 2π の周期関数である。
相互関係
単位円上の点の座標の関数であることから、三角関数の間には多数の相互関係が存在する。
- 基本相互関係
- 全てピタゴラスの定理により証明される。
- sin2 θ + cos2 θ = 1
- 負角・余角・補角公式
-
- sin(−θ) = −sin θ
- cos(−θ) = cos θ
- tan(−θ) = −tan θ
- sin(π − θ) = sin θ
- cos(π − θ) = −cos θ
- tan(π − θ) = −tan θ
- π回転・π/2回転
-
- sin(θ + π) = −sin θ
- cos(θ + π) = −cos θ
- tan(θ + π) = tan θ
加法定理
- sin(α + β) = sin α cos β + cos α sin β
- sin(α − β) = sin α cos β − cos α sin β
- cos(α + β) = cos α cos β − sin α sin β
- cos(α − β) = cos α cos β + sin α sin β
加法定理の導出および証明
1. 加法定理は、オイラーの公式から簡単に導出できる。
- cos(α + β) + i sin(α + β) = e(α+β)i(オイラーの公式)
- = eαieβi
- = (cos α + i sin α)(cos β + i sin β)
- = (cos α cos β − sin α sin β) + i(sin α cos β + cos α sin β)
両辺の実部、虚部を比較すると、それぞれ sin, cos の加法公式を得る。また、
において分母と分子を cos α cos β で割ると tan の加法公式が得られる。
この導出法は、オイラーの公式を既知とするように三角関数の導入(たとえば三角関数をべき級数として定義)していなければ証明として通用しない。
2. また、単位円上の2点間の距離を求める方法でも求められる。
単位円周上に2点 P(cos α, sin α), Q(cos β, sin β) を取り、P と Q の距離の2乗 PQ2 を2通りの方法で求めることを考える。(右図も参照)
- (1) 三平方の定理より求める
- PQ2 = (cos α − cos β)2 + (sin α − sin β)2
- = 2 − 2cos α cos β − 2sin α sinβ
- (2) 余弦定理より求める
- PQ2 = 12 + 12 − 2・1・1・cos(α − β)
- = 2 − 2cos(α − β)
(1), (2) より、PQ2 を媒介すると、
- 2 − 2cos α cos β − 2sin α sin β = 2 − 2cos(α − β)
- ∴ cos(α − β) = cos α cos β + sin α sin β
これより、他の3つの公式は次々に求まる。
- β に −β を代入すると、
- cos(α + β) = cos α cos β − sin α sin β
- 元の等式の α に を代入すると、
- sin(α + β) = sin α cos β + cos α sin β
- この等式の β に −β を代入すると、
- sin(α − β) = sin α cos β − cos α sin β(導出および証明終)
微積分
三角関数の微積分は、以下の表の通りである。
三角関数の微分では、次の極限
の成立が基本的である。このとき、sin x の導関数が cos x であることは加法定理から従う。さらに余角公式 cos x = sin(π/2 − x) から cos x の導関数は −sin x である。即ち、sin x は微分方程式 の特殊解である。また、他の三角関数の導関数も、上の事実から簡単に導ける。
級数展開
三角関数は以下のようにテイラー級数に展開される。解析学では、幾何的な性質へ言及せず、これらの表示を三角関数の定義とすることがある。z は任意の複素数、Bn はベルヌーイ数、En は オイラー数である。
無限乗積展開
部分分数展開
逆三角関数
三角関数の定義域を適当に制限したものの逆関数を逆三角関数(ぎゃくさんかくかんすう、inverse trigonometric function)と呼ぶ。逆三角関数は逆関数の記法に則り、元の関数の記号に −1 を右肩に付して表す。たとえば逆正弦関数(ぎゃくせいげんかんすう、inverse sine; インバース・サイン)は sin−1 x などと表す。arcsin, arccos などの記法もよく用いられる。
である。逆関数は逆数ではないので注意したい。逆数との混乱を避けるために、逆正弦関数 sin−1 x を arcsin x と書く流儀もある。一般に周期関数の逆関数は多価関数になるので、通常は逆三角関数を一価連続なる枝に制限して考えることが多い。たとえば、便宜的に主値と呼ばれる枝を
のように選ぶことが多い。またこのとき、制限があることを強調するために、Sin−1 x, Arcsin x のように頭文字を大文字にした表記がよく用いられる。
複素関数への拡張
三角関数の微分に関する性質から、cos x, sin x をテイラー展開することにより、かの有名なオイラーの公式 exp ix = cos x + i sin x が導かれる。これより、2つの等式、
exp ix = cos x + i sin x
exp(−ix) = cos x − i sin x
が得られるから、これを連立させて解くことにより、正弦関数・余弦関数の初等関数としての表現が可能となる。即ち、
この事実を用いて、三角関数の定義域を複素数全体に拡張することができる。まず、
である。ここで cosh x, sinh x は双曲線関数を指す。この等式は三角関数と双曲線関数の関係式と捉えることもできる。任意の複素数 z は z = x + iy (x, y ∈ R) と表現できるから、加法定理より
- cos z = cos(x + iy) = cos x cosh y − i sin x sinh y,
- sin z = sin(x + iy) = sin x cosh y + i cos x sinh y
が成り立つ。これこそが正弦関数・余弦関数の定義域を複素数全体に拡張したものである。他の三角関数も正弦関数と余弦関数の四則演算によって定義できるから、結局全ての三角関数は定義域を複素数全体に拡張できることが分かる。
-
cos(x + iy) の実部のグラフ
-
cos(x + iy) の虚部のグラフ
-
sin(x + iy) の実部のグラフ
-
sin(x + iy) の虚部のグラフ
球面三角法
球面の三角形ABC の内角を a, b, c, 各頂点の対辺に関する球の中心角を α, β, γ とするとき、次のような関係が成立する。余弦公式や正弦余弦公式は式の対称性により各記号を入れ替えたものも成立する。
- 正弦公式: sin a : sin b : sin c = sin α : sin β : sin γ
- 余弦公式: cos a = −cos b cos c + sin b sin c cos α
- 余弦公式: cos α = cos β cos γ + sin β sin γ cos a
- 正弦余弦公式: sin a cos β = cos b sin c − sin b cos c cos α
日本の中等教育における正弦関数の極限
日本の中等教育について、「一般的に教科書に載っている[1][2]、極限の値
の証明は循環論法であるため論理が破綻している」という主張がなされることがある[3]。ここで言う「教科書に載っている証明」とは、中心角xラジアンの扇形の面積を2つの三角形の面積ではさみ、いわゆるはさみうちの原理から証明するものであるが、ここで問題となるのは、証明に面積が利用されていることである[3](時にはラジアンが利用されていることも問題とされることもある[3])。ここで面積は積分によって定義されるものであるとすると、特に扇形の面積を求めるには三角関数の積分が必要となり、三角関数の積分をするには三角関数の微分ができねばならず、三角関数を微分するにはもとの極限が必要になる。このことが循環論法と呼ばれているのである。
この循環論法を回避する方法として正弦関数と余弦関数を上述のような無限級数で定義する方法がある[3]。ただし、これも高校範囲を超えているものと思われる。
参考文献
- ^ 大矢雅則; 岡部恒治 ほか13名『新編 数学Ⅲ』(改訂版)数研出版株式会社、東京都千代田区神田小川町2-3-3、2010年1月10日、53頁。ISBN 978-4-410-80166-2。 NCID BA89906770。OCLC 676686067。
- ^ 飯高茂; 松本幸夫 ほか22名『数学Ⅲ』東京書籍株式会社、東京都北区堀船2-17-1、2008年2月10日、49頁。ISBN 4-487-15513-4。 NCID BA71854010。OCLC 76931848。ほか
- ^ a b c d 川中宣明. “循環論法で証明になっていない” (PDF). p. 1. 2014年1月22日閲覧。
関連項目
外部リンク
- Weisstein, Eric W. "Trigonometric Functions". mathworld.wolfram.com (英語).
- 三角比の近似値表
Template:Link FA Template:Link GA Template:Link FA Template:Link GA