コンテンツにスキップ

「有限要素法」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
MathXYZ (会話 | 投稿記録)
m リンクを追加
MathXYZ (会話 | 投稿記録)
リンクを追加
タグ: モバイル編集 モバイルアプリ編集 Androidアプリ編集
3行目: 3行目:
{{Differential equations}}
{{Differential equations}}
{{計算物理学}}
{{計算物理学}}
{{pathnav|数学|数値解析|偏微分方程式の数値解法}}
'''有限要素法'''(ゆうげんようそほう、{{lang-en|Finite Element Method}}, '''FEM''')は[[数値解析]]手法の一つ。解析的に解くことが難しい[[微分方程式]]の近似解を数値的に得る方法の一つであり<ref name="Yamamoto1">{{Cite book |和書 |author=山本哲朗 |title=数値解析入門 |edition=増訂版 |date=2003-06 |publisher=[[サイエンス社]] |series=サイエンスライブラリ 現代数学への入門 14 |ISBN=4-7819-1038-6}}</ref>、Turner-Clough-Martin-Toppによって導入された<ref>Clough, R. W., Martin, H. C., Topp, L. J., & Turner, M. J. (1956). Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences, 23(9).</ref>。方程式が定義された領域を小領域([[計算格子|要素]])に分割し、各小領域における方程式を比較的単純で共通な[[補間]]関数で近似する<ref name="Yamamoto1"/>。[[構造力学]]分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、[[関数解析]]([[リースの表現定理]]、[[弱形式#ラックス=ミルグラムの定理|ラックス=ミルグラムの定理]]など)と結びついて、数学的に整然としている<ref>たとえば、有限要素法によって構成される近似解が属する集合は、元の偏微分方程式の解が属する関数空間の有限次元部分空間となるように構成されることが多い。</ref><ref>桂田祐史、[http://nalab.mind.meiji.ac.jp/~mk/lecture/suurikeisantokuron/fem-theory.pdf Poisson方程式に対する有限要素法の解析超特急]</ref>。
'''有限要素法'''(ゆうげんようそほう、{{lang-en|Finite Element Method}}, '''FEM''')は[[数値解析]]手法の一つ。解析的に解くことが難しい[[微分方程式]]の近似解を数値的に得る方法の一つであり<ref name="Yamamoto1">{{Cite book |和書 |author=山本哲朗 |title=数値解析入門 |edition=増訂版 |date=2003-06 |publisher=[[サイエンス社]] |series=サイエンスライブラリ 現代数学への入門 14 |ISBN=4-7819-1038-6}}</ref>、Turner-Clough-Martin-Toppによって導入された<ref>Clough, R. W., Martin, H. C., Topp, L. J., & Turner, M. J. (1956). Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences, 23(9).</ref>。方程式が定義された領域を小領域([[計算格子|要素]])に分割し、各小領域における方程式を比較的単純で共通な[[補間]]関数で近似する<ref name="Yamamoto1"/>。[[構造力学]]分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、[[関数解析]]([[リースの表現定理]]、[[弱形式#ラックス=ミルグラムの定理|ラックス=ミルグラムの定理]]など)と結びついて、数学的に整然としている<ref>たとえば、有限要素法によって構成される近似解が属する集合は、元の偏微分方程式の解が属する関数空間の有限次元部分空間となるように構成されることが多い。</ref><ref>桂田祐史、[http://nalab.mind.meiji.ac.jp/~mk/lecture/suurikeisantokuron/fem-theory.pdf Poisson方程式に対する有限要素法の解析超特急]</ref>。



2019年9月10日 (火) 14:29時点における版

有限要素法(ゆうげんようそほう、英語: Finite Element Method, FEM)は数値解析手法の一つ。解析的に解くことが難しい微分方程式の近似解を数値的に得る方法の一つであり[1]、Turner-Clough-Martin-Toppによって導入された[2]。方程式が定義された領域を小領域(要素)に分割し、各小領域における方程式を比較的単純で共通な補間関数で近似する[1]構造力学分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、関数解析(リースの表現定理ラックス=ミルグラムの定理など)と結びついて、数学的に整然としている[3][4]

特徴

  • 各小領域内を一次関数で補間(近似空間が元の解空間の部分空間になる場合はある種の射影を求めることになる)した場合、全領域では適切なノルムに対して最良近似であることが示される[5]
  • 線形問題・非線形問題・動的解析など、さまざまな問題に対応できる。これは、近似方程式の作り方や領域形状について、自由度が高いことに起因する[1]

アルゴリズム

  • 解析対象領域内で成り立つ方式(ポアソン方程式など)に対してある重み関数の積を施し、それを領域内で積分した弱形式を形成する。
  • 解析領域内部を小さな有限範囲の要素に分割する。一般的に、要素はその境界に節点が配置され、要素内部の物理量は各節点に対応する形状関数と節点の値の積の和として表現される[6]
    有限要素法では多くの種類の要素が定式されていて、問題に依って使い分けられるようになっている。要素の種類の違いは、要素の形状、要素内での解の近似に用いる多項式の次数や、隣り合う要素の間の境界での近似解の連続性などによる。
  • 解析領域全体の弱形式は積分で表されるので、それぞれの要素内の積分の総和として表すことができる。つまり、各要素の節点における未知数に対してこの積分を適用することによって、各要素の係数行列(連立一次方程式の左辺行列)を作成する(未知数は変位、速度、圧力など。右辺ベクトルも同時に形成される)。この係数行列は要素剛性行列と呼ばれる。
    実際の複雑な問題では要素領域内に対する積分の値を解析的な式計算で求めるのは難しいので、領域の補間関数の次数に応じてガウス・ルジャンドル法などの数値積分を用いて近似することが多い[1]
  • 各要素における係数行列(要素係数行列)の総和を取って領域全体の係数行列(全体剛性行列と呼ばれる)を作成し、解を求めることができる。

多くの場合に有限要素法では、近似解を求めることが連立一次方程式を解くことに帰着される (つまり最終的には数値線形代数の知識が必要になる)[1]。得られる全体の係数行列は一般に疎行列となる。使用記憶領域の削減と計算速度向上のため、行列のデータ構造には様々な形式が用いられ、その格納形式に対応して効率よく解くソルバーが存在する。たとえば、直接法で解く場合のスカイライン法などが知られている。

形状関数

形状関数とは、節点における物理量(変位など)から要素内の物理量を内挿するために用いられる関数である。たとえば四面体一次要素の場合、4つの頂点に節点i = 1, ... , 4 がとられ、節点i に対する形状関数Ni とそれぞれの点における物理量ui を用いて、要素内の任意の点 p における物理量up は形状関数の線形結合として

と表される。

形状関数Ni には、

  • 節点i の位置においてNi = 1
  • それ以外の節点位置においてNi = 0

という性質がある。

構造解析分野への応用

複雑な構造物を小さな要素の集合体として、(静的解析の場合)一次方程式に各節点の変位量の境界条件(ディリクレ境界条件ノイマン境界条件等)を代入して解く。

対象の構造に外力が加わって変形する場合などを解析する際に、構造解析には大きく分けて、変位を未知数にとる変位法と応力を未知数にとる応力法があり、有限要素構造解析では変位法が主流である。その理由は、応力法に比べてアルゴリズムが機械的に実行でき、プログラミングに適しているからである。機械設計分野ではCADモデルを用いた解析が浸透している。

その他の分野への応用

構造解析では使用している式に意味づけをしているが、その他の分野では手法として使用することが多い。電子状態計算(→実空間法)・電磁場解析流体解析など、微分方程式で記述されるあらゆる場の問題に適用可能であって、近年ではそれらの連成解析(流体構造連成、電磁場構造解析など)も盛んに研究されている。 また、従来は取扱いが難しかったクラックや大変形問題に対して、格子を用いないメッシュフリー法の研究も行われている。

脚注

  1. ^ a b c d e 山本哲朗『数値解析入門』(増訂版)サイエンス社〈サイエンスライブラリ 現代数学への入門 14〉、2003年6月。ISBN 4-7819-1038-6 
  2. ^ Clough, R. W., Martin, H. C., Topp, L. J., & Turner, M. J. (1956). Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences, 23(9).
  3. ^ たとえば、有限要素法によって構成される近似解が属する集合は、元の偏微分方程式の解が属する関数空間の有限次元部分空間となるように構成されることが多い。
  4. ^ 桂田祐史、Poisson方程式に対する有限要素法の解析超特急
  5. ^ 補間方法の理論的背景として、ガラーキン法英語版フランス語版イタリア語版ドイツ語版(重みつき残差法の一種)やレイリー・リッツ法(最小ポテンシャル原理)を適用して解を求めるが、両方式は最終的に同じ弱形式に帰着される。
  6. ^ したがって、使用する形状関数には一定の制限がある。

関連項目

関連文献

和書

  • 大地羊三:「有限要素法とその応用」、森北出版(数学ライブラリー 38)(1975年2月20日)。
  • G. ストラング、G.J.フィックス、三好哲彦・藤井宏(共訳):「有限要素法の理論」、培風館(1976年4月30日)。
  • 加川幸雄:「電気・電子のための 有限要素法入門」、オーム社(1977年5月30日)。
  • A.R.Mitchell、R.Wait、森正武(訳):「偏微分方程式の有限要素法」、科学技術出版(1978年5月10日)。
  • K.J.Bathe、E.L.Wilson、菊地文雄(訳):「有限要素法の数値計算」、科学技術出版社(1979年9月15日)。
  • J.T. オーデン、山田嘉昭(訳):「非線形連続体の有限要素法1」、培風館(1979年11月10日)。
  • J.T. オーデン、山田嘉昭(訳):「非線形連続体の有限要素法2」、培風館(1980年1月20日)。
  • 鷲津久一郎、宮本博、山田嘉昭、山本善之、川井忠彦(共編)「有限要素法ハンドブック I基礎編」、培風館、ISBN 4-563-03169-0(1981年9月25日)。
  • 加川幸雄:「電気・電子のための 有限要素法の実際」、オーム社、ISBN 4-274-02923-9(1982年5月30日)。
  • 中田高義、高橋則雄:「電気工学の有限要素法」、森北出版(1982年7月15日)。
  • 水木久夫、原平八郎:「有限要素法 理論編」、森北出版、ISBN 4-627-07180-9 (1983年1月25日)。
  • 鷲津久一郎、宮本博、山田嘉昭、山本善之、川井忠彦(共編)「有限要素法ハンドブック II応用編」、培風館、ISBN 4-563-03180-1(1983年1月25日)。
  • 加川幸雄:「閉領域問題のための 有限/境界要素法」、サイエンス社(1983年7月10日)。
  • 森正武:「有限要素法とその応用」、岩波書店(応用数学叢書)(1983年9月9日)。
  • C.C.ツィエンキーヴィッツ、𠮷識雅夫(訳)、山田嘉昭(訳):「マトリックス有限要素法(三訂版)」、培風館、ISBN 4-563-03168-2(1984年9月30日)。
  • スハス V. パタンカー、水谷幸夫・香月正司(共訳):「コンピュータによる熱移動と流れの数値解析」、森北出版、ISBN 4-627-91190-4(1985年2月27日)。
  • 川原睦人:「有限要素法流体解析」、日科技連、ISBN 4-8171-6011-X(1985年3月8日)。
  • 鷲津久一郎、池川昌弘:「有限要素法」、岩波書店、ISBN: 4-00-006065-1 (1987年6月24日)。
  • 小柴正則:「光・波動のための有限要素法の基礎」、ISBN 4-627-91350-8(1990年10月31日)。
  • 矢川元基、半谷裕彦:「有限要素法の基礎」、朝倉書店、ISBN 4-254-23079-6(1994年6月15日)。
  • 棚橋隆彦:「流れの有限要素法解析 I」、朝倉書店、ISBN 4-254-11406-0(1997年9月10日)。
  • 棚橋隆彦:「流れの有限要素法解析 II」、朝倉書店、ISBN 4-254-11407-9(1997年9月10日)。
  • 三好俊郎、白鳥正樹、坂田信二:「有限要素法解析」、朝倉書店、ISBN 4-254-11405-2(1998年9月1日)。
  • 矢川元基、塩谷隆二:「超並列有限要素解析」、朝倉書店、ISBN 4-254-23662-X(1998年10月20日)。
  • 矢川元基、青山裕司: 「有限要素法固有値解析」、森北出版、ISBN 4-627-91761-9(2001年9月28日)。
  • 日本計算工学会(編)、手塚明、土田英二:「アダプティブ有限要素法」、丸善(2003年8月30日)。
  • 矢川元基、吉村忍:「計算固体力学」、岩波書店(シリーズ現代工学入門)、ISBN 4-00-006942-X(2005年7月7日)。
  • 福森栄次:「よくわかる有限要素法」、オーム社、ISBN 4-274-06628-2(2005年11月15日)。
  • 川面恵司、渡邉隆之、岡本紀明:「有限要素法のモデル化技術と応用解析」、養賢堂、ISBN 978-4-8425-0422-3(2007年6月27日)。
  • 邵長城:「基本からわかる有限要素法」、森北出版、ISBN 978-4-627-91991-4(2008年10月1日)。
  • Jacob Fish, Ted Belytschko: 「有限要素法」、丸善、ISBN 978-4-621-07996-6(2008年12月25日)。
  • 浦川肇:「ラプラシアンの幾何と有限要素法」、朝倉書店(朝倉数学大系3)、ISBN 978-4-254-11823-0(2009年10月25日)。
  • 板根政男:「例題で学ぶ Marc有限要素法解析入門」、丸善、ISBN 978-4-621-08362-8(2011年3月30日)。
  • 藤井文夫、田中真人、佐藤繊美:「Fortran90/95による有限要素法プログラミング」、丸善出版、ISBN 978-4-621-08784-8(2014年1月20日)。
  • 大塚厚二、高石武史:「有限要素法で学ぶ現象と数理:FreeFEM++ 数理思考プログラミング」、共立出版、ISBN 978-4-320-01953-9 (2014年2月15日)。
  • 日本計算工学会(編):「第3版 有限要素法による流れのシミュレーション」、丸善出版、ISBN 978-4-621-30183-8(2017年7月30日)。

洋書

  • Claes Johnson、Mathematics:"Numerical Solution of Partial Differential Equations by the Finite Element Method"、Dover Publications、ISBN 978-0486469003 (2009年1月15日)。
  • Mats G. Larson, Fredrik Bengzon: "The Finite Element Method: Theory, Implementation, and Applications"、Springer、ISBN 978-3642332869 (2013年1月12日).

外部リンク