「ZFCから独立な命題の一覧」の版間の差分
表示
削除された内容 追加された内容
→一般の例: 内部リンク修正 |
m Bot作業依頼: 「証明」→「証明 (数学)」のリンク修正依頼(暫定32記事対象) (証明 (数学)) - log |
||
1行目: | 1行目: | ||
本項では、[[公理的集合論|ZFC集合論]]において決定不能であることが[[証明]]されている[[命題]]の[[一覧]]を掲げる。それらの命題は(ZFCが[[矛盾|無矛盾]]であれば)ZFCの[[公理]]からは証明することも[[反証]]することもできない。以下では「ZFCが無矛盾であれば」などの但し書きは割愛する。 |
本項では、[[公理的集合論|ZFC集合論]]において決定不能であることが[[証明 (数学)|証明]]されている[[命題]]の[[一覧]]を掲げる。それらの命題は(ZFCが[[矛盾|無矛盾]]であれば)ZFCの[[公理]]からは証明することも[[反証]]することもできない。以下では「ZFCが無矛盾であれば」などの但し書きは割愛する。 |
||
==公理的集合論の命題== |
==公理的集合論の命題== |
2021年4月27日 (火) 14:12時点における版
本項では、ZFC集合論において決定不能であることが証明されている命題の一覧を掲げる。それらの命題は(ZFCが無矛盾であれば)ZFCの公理からは証明することも反証することもできない。以下では「ZFCが無矛盾であれば」などの但し書きは割愛する。
公理的集合論の命題
一般の例
- ZFCの無矛盾性 - 1931年ゲーデルが、ZFCでは証明できない命題が存在することを初めて示した(ゲーデルの不完全性定理)。とくにZFCの無矛盾性それ自体がZFCで決定不能であることを証明した。
- 連続体仮説 (CH) - 1940年、ゲーデルはCHが成り立つZFCのモデルを構築することにより、CHがZFCで反証できないことを示した[1]。その後1963年、コーエンが、強制法という手法を用いてCHの否定が成り立つZFCのモデルを示し、CHがZFCで証明できないことを示した。
- 一般連続体仮説 (GCH)
- 構成可能公理 (V = L)
- ダイヤモンド原理 (◊)
- マーティンの公理 (MA)
- MA + ¬CH - ソロヴェイおよびテネンバウムによる[2]。
- ならば
巨大基数公理
一般的に、巨大基数と呼ばれる基数の存在はZFCでは決定することができない。
その他の分野の命題
- ボレル予想 - 任意の強零集合は可算であるという予想。
- 任意の -稠密な実数の部分集合が順序同型であるかどうか - 実数の部分集合 X が-稠密であるとは、任意の開区間が X の元を個以上含むことを言う[3]。
- ススリン線の存在 [4] - ダイヤモンド原理から従うことが知られている[5] 。逆にMA + ¬CHからはススリン木が存在しないことが従う[6] [7]。 また、CHを仮定してもススリン木の存在は証明できない[8]。
- クレパ木の存在 - ただし到達不能基数の存在が無矛盾であるとき[9]。
- フビニの定理の拡張[10]
- ある種のディオファントス方程式の解の存在[11]
- 群論におけるホワイトヘッドの問題(シェラハ、1974年) - A を任意のアーベル群とするとき、Ext1(A, Z) = 0 ならば A は自由アーベル群か?
脚注
- ^ "The Consistency of the Continuum Hypothesis" (1940)
- ^ Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9
- ^ Baumgartner, J., All -dense sets of reals can be isomorphic, Fund. Math. 79, pp.101 -- 106, 1973
- ^ Solovay, R. M.; Tennenbaum, S. (1971). “Iterated Cohen extensions and Souslin's problem”. Annals Of Mathematics. Second Series 94 (2): 201–245. doi:10.2307/1970860. JSTOR 1970860.
- ^ Baumgartner, J., J. Malitz, and W. Reiehart, Embedding trees in the rationals, Proc. Nat. Acad. Science, U.S.A., 67, pp. 1746 -- 1753, 1970
- ^ Baumgartner, J., J. Malitz, and W. Reiehart, Embedding trees in the rationals, Proc. Nat. Acad. Science, U.S.A., 67, pp. 1746 -- 1753, 1970
- ^ Shelah, S., Free limits of forcing and more on Aronszajn trees, Israel Journal of Mathematics, 40, pp. 1 -- 32, 1971
- ^ Devlin, K., and H. Johnsbraten, The Souslin Problem, Lecture Notes on Mathematics 405, Springer, 1974
- ^ Silver, J., The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in Axiomatic Set Theory, Proc. Symp, in Pure Mathematics (13) pp. 383 - 390, 1967
- ^ Friedman, Harvey (1980). “A Consistent Fubini-Tonelli Theorem for Nonmeasurable Functions”. Illinois J. Math. 24 (3): 390–395. MR573474.
- ^ James P. Jones (1980). “Undecidable diophantine equations”. Bull. Amer. Math. Soc. 3 (2): 859–862. doi:10.1090/s0273-0979-1980-14832-6 .