コンテンツにスキップ

英文维基 | 中文维基 | 日文维基 | 草榴社区

7の平方根

出典: フリー百科事典『ウィキペディア(Wikipedia)』
The rectangle that bounds an equialateral triangle of side 2, or a regular hexagon of side 1, has size square root of 3 by square root of 4, with a diagonal of square root of 7.
A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and somewhat more than 2.64, respectively

7の平方根(ななのへいほうこん、: square root of 7)は、平方して7となる実数である。すなわち、 をみたす実数rであり、冪根形式では[1]指数形式ではと表される。無理数かつ代数的数である。

最初の60桁の有効数字は

2.64575131106459059050161575363926042571025918308245018036833...[2]

これは約99.99%の精度(1000分の1)以内で2.646に切り上げることができるが、正確な値とは約1/4,000異なっている。127/48(≈ 2.645833...)の方がより良い近似値である。分母がわずか48しかないにもかかわらず、正確な値とは1/12,000(33000分の1)未満の差しかない。

の小数表示100万桁以上が公開されている[3]

有理近似

[編集]
Explanation of how to extract the square root of 7 to 7 places and more, from Hawney, 1797

The extraction of decimal-fraction approximations to square roots by various methods has used the square root of 7 as an example or exercise in textbooks, for hundreds of years. Different numbers of digits after the decimal point are shown: 5 in 1773[4] and 1852,[5] 3 in 1835,[6] 6 in 1808,[7] and 7 in 1797.[8] An extraction by Newton's method (approximately) was illustrated in 1922, concluding that it is 2.646 "to the nearest thousandth".[9]

For a family of good rational approximations, the square root of 7 can be expressed as the continued fraction

オンライン整数列大辞典の数列 A010121

The successive partial evaluations of the continued fraction, which are called its convergents, approach :

Their numerators are 2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257…オンライン整数列大辞典の数列 A041008 , and their denominators are 1, 1, 2, 3, 14, 17, 31, 48, 223, 271, 494, 765, 3554, 4319, 7873, 12192,…オンライン整数列大辞典の数列 A041009.

Each convergent is a best rational approximation of ; in other words, it is closer to than any rational with a smaller denominator. Approximate decimal equivalents improve linearly (number of digits proportional to convergent number) at a rate of less than one digit per step:

Every fourth convergent, starting with 8/3, expressed as x/y, satisfies the Pell's equation[10]

When is approximated with the Babylonian method, starting with x1 = 3 and using xn+1 = 1/2(xn + 7/xn), the nth approximant xn is equal to the 2nth convergent of the continued fraction:

All but the first of these satisfy the Pell's equation above.

The Babylonian method is equivalent to Newton's method for root finding applied to the polynomial . The Newton's method update, is equal to when . The method therefore converges quadratically (number of accurate decimal digits proportional to the square of the number of Newton or Babylonian steps).

幾何学

[編集]
Root rectangles illustrate a construction of the square root of 7 (the diagonal of the root-6 rectangle).

平面幾何学において、は一連の動的な長方形により、すなわち上図の長方形の最大の対角線として表される[11][12][13]

辺の長さが2の正三角形に外接する最小の長方形は長さの対角線を持つ[14]

数学以外の分野

[編集]
Scan of US dollar bill reverse with root 7 rectangle annotation

現行のアメリカ合衆国1ドル紙幣の裏にある大きな内箱は長さと幅の比がで、対角線の長さが6.0インチである(測定精度の範囲内で)[15]

関連項目

[編集]

脚注

[編集]
  1. ^ Darby, John (1843). The Practical Arithmetic, with Notes and Demonstrations to the Principal Rules, .... London: Whittaker & Company. p. 172. https://books.google.com/books?id=lfteAAAAcAAJ&pg=PA172 27 March 2022閲覧。 
  2. ^ Sloane, N.J.A. (ed.). "Sequence A010465 (Decimal expansion of square root of 7)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2024年1月21日閲覧
  3. ^ Robert Nemiroff and Jerry Bonnell (2008). The square root of 7. https://www.gutenberg.org/ebooks/631 25 March 2022閲覧。 
  4. ^ Ewing, Alexander (1773). Institutes of Arithmetic: For the Use of Schools and Academies. Edinburgh: T. Caddell. p. 104. https://books.google.com/books?id=rUvzudeLHbQC&pg=PA104 
  5. ^ Ray, Joseph (1852). Ray's Algebra, Part Second: An Analytical Treatise, Designed for High Schools and Academies, Part 2. Cincinnati: Sargent, Wilson & Hinkle. p. 132. https://books.google.com/books?id=nY4AAAAAMAAJ&pg=PA132 27 March 2022閲覧。 
  6. ^ Bailey, Ebenezer (1835). First Lessons in Algebra, Being an Easy Introduction to that Science.... Russell, Shattuck & Company. pp. 212–213. https://books.google.com/books?id=e33H8RjDxocC&pg=PA212 27 March 2022閲覧。 
  7. ^ Thompson, James (1808). The American Tutor's Guide: Being a Compendium of Arithmetic. In Six Parts. Albany: E. & E. Hosford. p. 122. https://books.google.com/books?id=8R8AAAAAMAAJ&pg=PA122 27 March 2022閲覧。 
  8. ^ Hawney, William (1797). The Complete Measurer: Or, the Whole Art of Measuring. In Two Parts. Part I. Teaching Decimal Arithmetic ... Part II. Teaching to Measure All Sorts of Superficies and Solids ... Thirteenth Edition. To which is Added an Appendix. 1. Of Gaging. 2. Of Land-measuring. London. pp. 59–60. https://books.google.com/books?id=9eSLbslYbpAC&pg=PA60 27 March 2022閲覧。 
  9. ^ George Wentworth, David Eugene Smith, Herbert Druery Harper (1922). Fundamentals of Practical Mathematics. Ginn and Company. p. 113. https://books.google.com/books?id=sqMXAAAAYAAJ&pg=PA113 27 March 2022閲覧。 
  10. ^ Pell's Equation II”. uconn.edu. 17 March 2022閲覧。
  11. ^ Jay Hambidge (1920). Dynamic Symmetry: The Greek Vase (Reprint of original Yale University Press ed.). Whitefish, MT: Kessinger Publishing. pp. 19–29. ISBN 0-7661-7679-7. https://archive.org/details/bub_gb_Qq4gAAAAMAAJ. "Dynamic Symmetry root rectangles." 
  12. ^ Matila Ghyka (1977). The Geometry of Art and Life. Courier Dover Publications. pp. 126–127. ISBN 9780486235424. https://archive.org/details/geometryofartlif00mati 
  13. ^ Fletcher, Rachel (2013). Infinite Measure: Learning to Design in Geometric Harmony with Art, Architecture, and Nature. George F Thompson Publishing. ISBN 978-1-938086-02-1. https://infinitemeasure.com/publications/infinite-measure/ 
  14. ^ Blackwell, William (1984). Geometry in Architecture. Key Curriculum Press. p. 25. ISBN 9781559530187. https://books.google.com/books?id=AJFZAAAAYAAJ&q=%22square+root+of+seven%22 26 March 2022閲覧。 
  15. ^ McGrath, Ken (2002). The Secret Geometry of the Dollar. AuthorHouse. pp. 47–49. ISBN 9780759611702. https://books.google.com/books?id=1BgpDwAAQBAJ&pg=PA48 26 March 2022閲覧。