コンテンツにスキップ
メインメニュー
メインメニュー
サイドバーに移動
非表示
案内
メインページ
コミュニティ・ポータル
最近の出来事
新しいページ
最近の更新
おまかせ表示
練習用ページ
アップロード (ウィキメディア・コモンズ)
ヘルプ
ヘルプ
井戸端
お知らせ
バグの報告
ウィキペディアに関するお問い合わせ
検索
検索
表示
寄付
アカウント作成
ログイン
個人用ツール
寄付
アカウント作成
ログイン
ログアウトした編集者のページ
もっと詳しく
投稿記録
トーク
英文维基
|
中文维基
|
日文维基
|
草榴社区
目次
サイドバーに移動
非表示
ページ先頭
1
'"`UNIQ--postMath-00000002-QINU`"' を含む積分
2
'"`UNIQ--postMath-00000008-QINU`"' を含む積分
3
'"`UNIQ--postMath-00000011-QINU`"' を含む積分
4
'"`UNIQ--postMath-00000014-QINU`"' を含む積分
5
'"`UNIQ--postMath-00000016-QINU`"'を含む積分
6
'"`UNIQ--postMath-00000018-QINU`"' を含む積分
7
'"`UNIQ--postMath-00000021-QINU`"' を含む積分
8
'"`UNIQ--postMath-00000023-QINU`"' を含む積分
9
'"`UNIQ--postMath-0000002C-QINU`"' を含む積分
10
三角関数を含む積分
11
逆三角関数を含む積分
12
指数関数を含む積分
13
対数関数を含む積分
14
双曲線関数を含む積分
15
定積分
16
関連項目
目次の表示・非表示を切り替え
原始関数の一覧
43の言語版
Afrikaans
العربية
Башҡортса
Български
বাংলা
Bosanski
Català
Čeština
Чӑвашла
Deutsch
English
Español
Euskara
فارسی
Suomi
Français
Galego
客家語 / Hak-kâ-ngî
हिन्दी
Hrvatski
Magyar
Bahasa Indonesia
Italiano
ភាសាខ្មែរ
한국어
Lombard
Lietuvių
Latviešu
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Anarâškielâ
Српски / srpski
தமிழ்
Türkçe
Татарча / tatarça
Українська
Tiếng Việt
中文
リンクを編集
ページ
ノート
日本語
閲覧
編集
履歴表示
ツール
ツール
サイドバーに移動
非表示
操作
閲覧
編集
履歴表示
全般
リンク元
関連ページの更新状況
ファイルをアップロード
特別ページ
この版への固定リンク
ページ情報
このページを引用
短縮URLを取得する
QRコードをダウンロード
印刷/書き出し
ブックの新規作成
PDF 形式でダウンロード
印刷用バージョン
他のプロジェクト
ウィキデータ項目
表示
サイドバーに移動
非表示
出典: フリー百科事典『ウィキペディア(Wikipedia)』
この記事は
検証可能
な
参考文献や出典
が全く示されていないか、不十分です。
出典を追加
して記事の信頼性向上にご協力ください。
(
このテンプレートの使い方
)
出典検索
?
:
"原始関数の一覧"
–
ニュース
·
書籍
·
スカラー
·
CiNii
·
J-STAGE
·
NDL
·
dlib.jp
·
ジャパンサーチ
·
TWL
(
2016年1月
)
本項は、
原始関数
の一覧
(げんしかんすうのいちらん)である。以下、積分定数は
C
{\displaystyle C}
とする。
a
x
+
b
{\displaystyle ax+b}
を含む積分
[
編集
]
∫
1
a
x
+
b
d
x
=
1
a
ln
|
a
x
+
b
|
+
C
{\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac {1}{a}}\ln \left|ax+b\right|+C}
∫
x
a
x
+
b
d
x
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
+
C
{\displaystyle \int {\frac {x}{ax+b}}\,dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|+C}
∫
x
2
a
x
+
b
d
x
=
1
2
a
3
(
a
2
x
2
−
2
a
b
x
+
2
b
2
ln
|
a
x
+
b
|
)
+
C
{\displaystyle \int {\frac {x^{2}}{ax+b}}\,dx={\frac {1}{2a^{3}}}(a^{2}x^{2}-2abx+2b^{2}\ln \left|ax+b\right|)+C}
∫
1
x
(
a
x
+
b
)
d
x
=
−
1
b
ln
|
a
x
+
b
x
|
+
C
{\displaystyle \int {\frac {1}{x(ax+b)}}\,dx=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|+C}
∫
1
x
2
(
a
x
+
b
)
d
x
=
a
b
2
ln
|
a
x
+
b
x
|
−
1
b
x
+
C
{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}\,dx={\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|-{\frac {1}{bx}}+C}
a
+
b
x
{\displaystyle {\sqrt {a+bx}}}
を含む積分
[
編集
]
∫
x
a
+
b
x
d
x
=
2
15
b
2
(
3
b
x
−
2
a
)
(
a
+
b
x
)
3
2
+
C
{\displaystyle \int x{\sqrt {a+bx}}\,dx={\frac {2}{15b^{2}}}(3bx-2a)(a+bx)^{\frac {3}{2}}+C}
∫
x
2
a
+
b
x
d
x
=
2
105
b
3
(
15
b
2
x
2
−
12
a
b
x
+
8
a
2
)
(
a
+
b
x
)
3
2
+
C
{\displaystyle \int x^{2}{\sqrt {a+bx}}\,dx={\frac {2}{105b^{3}}}(15b^{2}x^{2}-12abx+8a^{2})(a+bx)^{\frac {3}{2}}+C}
∫
x
n
a
+
b
x
d
x
=
2
b
(
2
n
+
3
)
x
n
(
a
+
b
x
)
3
2
−
2
n
a
b
(
2
n
+
3
)
∫
x
n
−
1
a
+
b
x
d
x
{\displaystyle \int x^{n}{\sqrt {a+bx}}\,dx={\frac {2}{b(2n+3)}}x^{n}(a+bx)^{\frac {3}{2}}-{\frac {2na}{b(2n+3)}}\int x^{n-1}{\sqrt {a+bx}}dx}
∫
a
+
b
x
x
d
x
=
2
a
+
b
x
+
a
∫
1
x
a
+
b
x
d
x
{\displaystyle \int {\frac {\sqrt {a+bx}}{x}}\,dx=2{\sqrt {a+bx}}+a\int {\frac {1}{x{\sqrt {a+bx}}}}dx}
∫
a
+
b
x
x
n
d
x
=
−
1
a
(
n
−
1
)
(
a
+
b
x
)
3
2
x
n
−
1
−
(
2
n
−
5
)
b
2
a
(
n
−
1
)
∫
a
+
b
x
x
n
−
1
d
x
,
n
≠
1
{\displaystyle \int {\frac {\sqrt {a+bx}}{x^{n}}}\,dx={\frac {-1}{a(n-1)}}{\frac {(a+bx)^{\frac {3}{2}}}{x^{n-1}}}-{\frac {(2n-5)b}{2a(n-1)}}\int {\frac {\sqrt {a+bx}}{x^{n-1}}}dx,n\neq 1}
∫
1
x
a
+
b
x
d
x
=
1
a
ln
(
a
+
b
x
−
a
a
+
b
x
+
a
)
+
C
,
a
>
0
{\displaystyle \int {\frac {1}{x{\sqrt {a+bx}}}}\,dx={\frac {1}{\sqrt {a}}}\ln \left({\frac {{\sqrt {a+bx}}-{\sqrt {a}}}{{\sqrt {a+bx}}+{\sqrt {a}}}}\right)+C,a>0}
=
2
−
a
arctan
a
+
b
x
−
a
+
C
,
a
<
0
{\displaystyle ={\frac {2}{\sqrt {-a}}}\arctan {\sqrt {\frac {a+bx}{-a}}}+C,a<0}
∫
1
x
n
a
+
b
x
d
x
=
−
1
a
(
n
−
1
)
a
+
b
x
x
n
−
1
−
(
2
n
−
3
)
b
2
a
(
n
−
1
)
∫
1
x
n
−
1
a
+
b
x
d
x
,
n
≠
1
{\displaystyle \int {\frac {1}{x^{n}{\sqrt {a+bx}}}}\,dx={\frac {-1}{a(n-1)}}{\frac {\sqrt {a+bx}}{x^{n-1}}}-{\frac {(2n-3)b}{2a(n-1)}}\int {\frac {1}{x^{n-1}}}{\sqrt {a+bx}}dx,n\neq 1}
x
2
±
α
2
(
α
≠
0
)
{\displaystyle x^{2}\pm {\alpha }^{2}(\alpha \neq 0)}
を含む積分
[
編集
]
∫
1
x
2
+
α
2
d
x
=
1
α
arctan
x
α
+
C
{\displaystyle \int {\frac {1}{x^{2}+\alpha ^{2}}}\,dx={\frac {1}{\alpha }}\arctan {\frac {x}{\alpha }}+C}
∫
1
±
x
2
∓
α
2
d
x
=
1
2
α
ln
(
x
∓
α
±
x
+
α
)
+
C
{\displaystyle \int {\frac {1}{\pm x^{2}\mp \alpha ^{2}}}\,dx={\frac {1}{2\alpha }}\ln \left({\dfrac {x\mp \alpha }{\pm x+\alpha }}\right)+C}
a
x
2
+
b
{\displaystyle ax^{2}+b}
を含む積分
[
編集
]
∫
1
a
x
2
+
b
d
x
=
1
a
b
arctan
a
b
x
+
C
{\displaystyle \int {\frac {1}{ax^{2}+b}}\,dx={\frac {1}{\sqrt {ab}}}\arctan {\sqrt {\frac {a}{b}}}x+C}
a
x
2
+
b
x
+
c
(
a
≠
0
)
{\displaystyle ax^{2}+bx+c(a\neq 0)}
を含む積分
[
編集
]
∫
(
a
x
2
+
b
x
+
c
)
d
x
=
a
x
3
3
+
b
x
2
2
+
c
x
+
C
{\displaystyle \int (ax^{2}+bx+c)\,dx={\frac {ax^{3}}{3}}+{\frac {bx^{2}}{2}}+cx+C}
a
2
+
x
2
(
a
>
0
)
{\displaystyle {\sqrt {a^{2}+x^{2}}}\;(a>0)}
を含む積分
[
編集
]
∫
a
2
+
x
2
d
x
=
1
2
x
a
2
+
x
2
+
1
2
a
2
ln
(
x
+
a
2
+
x
2
)
+
C
{\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}+x^{2}}}+{\frac {1}{2}}a^{2}\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
∫
x
2
a
2
+
x
2
d
x
=
1
8
x
(
a
2
+
2
x
2
)
a
2
+
x
2
−
1
8
a
4
ln
(
x
+
a
2
+
x
2
)
+
C
{\displaystyle \int x^{2}{\sqrt {a^{2}+x^{2}}}\,dx={\frac {1}{8}}x(a^{2}+2x^{2}){\sqrt {a^{2}+x^{2}}}-{\frac {1}{8}}a^{4}\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
∫
a
2
+
x
2
x
d
x
=
a
2
+
x
2
−
a
ln
(
a
+
a
2
+
x
2
x
)
+
C
{\displaystyle \int {\frac {\sqrt {a^{2}+x^{2}}}{x}}\,dx={\sqrt {a^{2}+x^{2}}}-a\ln \left({\frac {a+{\sqrt {a^{2}+x^{2}}}}{x}}\right)+C}
∫
a
2
+
x
2
x
2
d
x
=
ln
(
x
+
a
2
+
x
2
)
−
a
2
+
x
2
x
+
C
{\displaystyle \int {\frac {\sqrt {a^{2}+x^{2}}}{x^{2}}}\,dx=\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)-{\frac {\sqrt {a^{2}+x^{2}}}{x}}+C}
∫
1
a
2
+
x
2
d
x
=
ln
(
x
+
a
2
+
x
2
)
+
C
{\displaystyle \int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,dx=\ln \left(x+{\sqrt {a^{2}+x^{2}}}\right)+C}
∫
x
2
a
2
+
x
2
d
x
=
1
2
x
a
2
+
x
2
−
1
2
a
2
ln
(
a
2
+
x
2
+
x
)
+
C
{\displaystyle \int {\frac {x^{2}}{\sqrt {a^{2}+x^{2}}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}+x^{2}}}-{\frac {1}{2}}a^{2}\ln \left({\sqrt {a^{2}+x^{2}}}+x\right)+C}
∫
1
x
a
2
+
x
2
d
x
=
1
a
ln
(
x
a
+
a
2
+
x
2
)
+
C
{\displaystyle \int {\frac {1}{x{\sqrt {a^{2}+x^{2}}}}}\,dx={\frac {1}{a}}\ln \left({\frac {x}{a+{\sqrt {a^{2}+x^{2}}}}}\right)+C}
∫
1
x
2
a
2
+
x
2
d
x
=
−
a
2
+
x
2
a
2
x
+
C
{\displaystyle \int {\frac {1}{x^{2}{\sqrt {a^{2}+x^{2}}}}}\,dx=-{\frac {\sqrt {a^{2}+x^{2}}}{a^{2}x}}+C}
x
2
−
a
2
(
x
2
>
a
2
)
{\displaystyle {\sqrt {x^{2}-a^{2}}}\;(x^{2}>a^{2})}
を含む積分
[
編集
]
∫
1
x
2
−
a
2
d
x
=
ln
(
x
+
x
2
−
a
2
)
+
C
{\displaystyle \int {\frac {1}{\sqrt {x^{2}-a^{2}}}}\,dx=\ln \left(x+{\sqrt {x^{2}-a^{2}}}\right)+C}
a
2
−
x
2
(
a
2
>
x
2
)
{\displaystyle {\sqrt {a^{2}-x^{2}}}\;(a^{2}>x^{2})}
を含む積分
[
編集
]
∫
1
a
2
−
x
2
d
x
=
arcsin
x
a
+
C
=
−
arccos
x
a
+
C
{\displaystyle \int {\frac {1}{\sqrt {a^{2}-x^{2}}}}\,dx=\arcsin {\frac {x}{a}}+C=-\arccos {\frac {x}{a}}+C}
∫
a
2
−
x
2
d
x
=
1
2
x
a
2
−
x
2
+
a
2
2
arcsin
x
a
+
C
{\displaystyle \int {\sqrt {a^{2}-x^{2}}}\,dx={\frac {1}{2}}x{\sqrt {a^{2}-x^{2}}}+{\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+C}
∫
x
2
a
2
−
x
2
d
x
=
1
8
x
(
2
x
2
−
a
2
)
a
2
−
x
2
+
1
8
a
4
arcsin
x
a
+
C
{\displaystyle \int x^{2}{\sqrt {a^{2}-x^{2}}}\,dx={\frac {1}{8}}x(2x^{2}-a^{2}){\sqrt {a^{2}-x^{2}}}+{\frac {1}{8}}a^{4}\arcsin {\frac {x}{a}}+C}
∫
a
2
−
x
2
x
d
x
=
a
2
−
x
2
−
a
ln
(
a
+
a
2
−
x
2
x
)
+
C
{\displaystyle \int {\frac {\sqrt {a^{2}-x^{2}}}{x}}\,dx={\sqrt {a^{2}-x^{2}}}-a\ln \left({\frac {a+{\sqrt {a^{2}-x^{2}}}}{x}}\right)+C}
∫
a
2
−
x
2
x
2
d
x
=
−
a
2
−
x
2
x
−
arcsin
x
a
+
C
{\displaystyle \int {\frac {\sqrt {a^{2}-x^{2}}}{x^{2}}}\,dx=-{\frac {\sqrt {a^{2}-x^{2}}}{x}}-\arcsin {\frac {x}{a}}+C}
∫
1
x
a
2
−
x
2
d
x
=
−
1
a
ln
(
a
+
a
2
−
x
2
x
)
+
C
{\displaystyle \int {\frac {1}{x{\sqrt {a^{2}-x^{2}}}}}\,dx=-{\frac {1}{a}}\ln \left({\frac {a+{\sqrt {a^{2}-x^{2}}}}{x}}\right)+C}
∫
x
2
a
2
−
x
2
d
x
=
−
1
2
x
a
2
−
x
2
+
1
2
a
2
arcsin
x
a
+
C
{\displaystyle \int {\frac {x^{2}}{\sqrt {a^{2}-x^{2}}}}\,dx=-{\frac {1}{2}}x{\sqrt {a^{2}-x^{2}}}+{\frac {1}{2}}a^{2}\arcsin {\frac {x}{a}}+C}
∫
1
x
2
a
2
−
x
2
d
x
=
−
a
2
−
x
2
a
2
x
+
C
{\displaystyle \int {\frac {1}{x^{2}{\sqrt {a^{2}-x^{2}}}}}\,dx=-{\frac {\sqrt {a^{2}-x^{2}}}{a^{2}x}}+C}
R
=
|
a
|
x
2
+
b
x
+
c
(
a
≠
0
)
{\displaystyle R={\sqrt {|a|x^{2}+bx+c}}\;(a\neq 0)}
を含む積分
[
編集
]
∫
d
x
R
=
1
a
ln
(
2
a
R
+
2
a
x
+
b
)
(
for
a
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left(2{\sqrt {a}}R+2ax+b\right)\qquad ({\mbox{for }}a>0)}
∫
d
x
R
=
1
a
arsinh
2
a
x
+
b
4
a
c
−
b
2
(for
a
>
0
,
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\operatorname {arsinh} {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}
∫
d
x
R
=
1
a
ln
|
2
a
x
+
b
|
(for
a
>
0
,
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}
∫
d
x
R
=
−
1
−
a
arcsin
2
a
x
+
b
b
2
−
4
a
c
(for
a
<
0
,
4
a
c
−
b
2
<
0
,
(
2
a
x
+
b
)
<
b
2
−
4
a
c
)
{\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left(2ax+b\right)<{\sqrt {b^{2}-4ac}}{\mbox{)}}}
∫
d
x
R
3
=
4
a
x
+
2
b
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax+2b}{(4ac-b^{2})R}}}
∫
d
x
R
5
=
4
a
x
+
2
b
3
(
4
a
c
−
b
2
)
R
(
1
R
2
+
8
a
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax+2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}}+{\frac {8a}{4ac-b^{2}}}\right)}
∫
d
x
R
2
n
+
1
=
2
(
2
n
−
1
)
(
4
a
c
−
b
2
)
(
2
a
x
+
b
R
2
n
−
1
+
4
a
(
n
−
1
)
∫
d
x
R
2
n
−
1
)
{\displaystyle \int {\frac {dx}{R^{2n+1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax+b}{R^{2n-1}}}+4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)}
∫
x
R
d
x
=
R
a
−
b
2
a
∫
d
x
R
{\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}}
∫
x
R
3
d
x
=
−
2
b
x
+
4
c
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx+4c}{(4ac-b^{2})R}}}
∫
x
R
2
n
+
1
d
x
=
−
1
(
2
n
−
1
)
a
R
2
n
−
1
−
b
2
a
∫
d
x
R
2
n
+
1
{\displaystyle \int {\frac {x}{R^{2n+1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n+1}}}}
∫
d
x
x
R
=
−
1
c
ln
(
2
c
R
+
b
x
+
2
c
x
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R+bx+2c}{x}}\right)}
∫
d
x
x
R
=
−
1
c
arsinh
(
b
x
+
2
c
|
x
|
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\operatorname {arsinh} \left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}
三角関数を含む積分
[
編集
]
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos x\,dx=\sin x+C}
∫
−
sin
x
d
x
=
cos
x
+
C
{\displaystyle \int -\sin x\,dx=\cos x+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫
−
csc
2
x
d
x
=
cot
x
+
C
{\displaystyle \int -\csc ^{2}x\,dx=\cot x+C}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
{\displaystyle \int \sec x\tan x\,dx=\sec x+C}
∫
−
csc
x
cot
x
d
x
=
csc
x
+
C
{\displaystyle \int -\csc x\cot x\,dx=\csc x+C}
∫
tan
x
d
x
=
−
ln
(
cos
x
)
+
C
{\displaystyle \int \tan x\,dx=-\ln(\cos x)+C}
∫
cot
x
d
x
=
ln
(
sin
x
)
+
C
{\displaystyle \int \cot x\,dx=\ln(\sin x)+C}
∫
sec
x
d
x
=
ln
(
sec
x
+
tan
x
)
+
C
=
gd
−
1
x
+
C
gd
−
1
x
{\displaystyle \int \sec x\,dx=\ln(\sec x+\tan x)+C=\operatorname {gd} ^{-1}x+C\quad \operatorname {gd} ^{-1}x}
:
グーデルマン関数
の
逆関数
∫
csc
x
d
x
=
−
ln
(
csc
x
+
cot
x
)
+
C
=
ln
(
tan
x
−
sin
x
sin
x
tan
x
)
+
C
{\displaystyle \int \csc x\,dx=-\ln(\csc x+\cot x)+C=\ln \left({\tan x-\sin x \over \sin x\tan x}\right)+C}
∫
sin
n
x
d
x
=
−
1
n
sin
n
−
1
x
cos
x
+
n
−
1
n
∫
sin
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {1}{n}}\sin ^{n-1}x\cos x+{\frac {n-1}{n}}\int \sin ^{n-2}x\,dx+C\quad \forall n\geq 2}
∫
sin
2
x
d
x
=
x
2
−
sin
2
x
4
+
C
{\displaystyle \int \sin ^{2}x\,dx={\frac {x}{2}}-{\frac {\sin {2x}}{4}}+C}
∫
cos
n
x
d
x
=
1
n
cos
n
−
1
x
sin
x
+
n
−
1
n
∫
cos
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \cos ^{n}x\,dx={\frac {1}{n}}\cos ^{n-1}x\sin x+{\frac {n-1}{n}}\int \cos ^{n-2}x\,dx+C\quad \forall n\geq 2}
∫
cos
2
x
d
x
=
x
2
+
sin
2
x
4
+
C
{\displaystyle \int \cos ^{2}x\,dx={\frac {x}{2}}+{\frac {\sin {2x}}{4}}+C}
∫
tan
n
x
d
x
=
1
n
−
1
tan
n
−
1
x
−
∫
tan
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \tan ^{n}x\,dx={\frac {1}{n-1}}\tan ^{n-1}x-\int \tan ^{n-2}x\,dx+C\quad \forall n\geq 2}
∫
tan
2
x
d
x
=
tan
x
−
x
+
C
{\displaystyle \int \tan ^{2}x\,dx=\tan x-x+C}
∫
cot
n
x
d
x
=
1
n
−
1
cot
n
−
1
x
−
∫
cot
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \cot ^{n}x\,dx={\frac {1}{n-1}}\cot ^{n-1}x-\int \cot ^{n-2}x\,dx+C\quad \forall n\geq 2}
∫
cot
2
x
d
x
=
−
cot
x
−
x
+
C
{\displaystyle \int \cot ^{2}x\,dx=-\cot x-x+C}
∫
sec
n
x
d
x
=
1
n
−
1
sec
n
−
2
x
tan
x
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \sec ^{n}x\,dx={\frac {1}{n-1}}\sec ^{n-2}x\tan x+{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx+C\quad \forall n\geq 2}
∫
csc
n
x
d
x
=
−
1
n
−
1
csc
n
−
2
x
cot
x
+
n
−
2
n
−
1
∫
csc
n
−
2
x
d
x
+
C
∀
n
≥
2
{\displaystyle \int \csc ^{n}x\,dx=-{\frac {1}{n-1}}\csc ^{n-2}x\cot x+{\frac {n-2}{n-1}}\int \csc ^{n-2}x\,dx+C\quad \forall n\geq 2}
逆三角関数を含む積分
[
編集
]
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
{\displaystyle \int \arcsin x\,dx=x\arcsin x+{\sqrt {1-x^{2}}}+C}
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
{\displaystyle \int \arccos x\,dx=x\arccos x-{\sqrt {1-x^{2}}}+C}
∫
arctan
x
d
x
=
x
arctan
x
−
ln
1
+
x
2
+
C
{\displaystyle \int \arctan x\,dx=x\arctan x-\ln {\sqrt {1+x^{2}}}+C}
∫
arccot
x
d
x
=
x
arccot
x
+
ln
1
+
x
2
+
C
{\displaystyle \int \operatorname {arccot} x\,dx=x\operatorname {arccot} x+\ln {\sqrt {1+x^{2}}}+C}
∫
arcsec
x
d
x
=
x
arcsec
x
−
ln
(
x
−
x
2
−
1
)
+
C
{\displaystyle \int \operatorname {arcsec} x\,dx=x\operatorname {arcsec} x-\ln(x-{\sqrt {x^{2}-1}})+C}
∫
arccsc
x
d
x
=
x
arccsc
x
+
ln
(
x
+
x
2
−
1
)
+
C
{\displaystyle \int \operatorname {arccsc} x\,dx=x\operatorname {arccsc} x+\ln(x+{\sqrt {x^{2}-1}})+C}
指数関数を含む積分
[
編集
]
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int e^{x}\,dx=e^{x}+C}
∫
α
x
d
x
=
α
x
ln
α
+
C
{\displaystyle \int \alpha ^{x}\,dx={\frac {\alpha ^{x}}{\ln \alpha }}+C}
∫
x
e
a
x
d
x
=
1
a
2
(
a
x
−
1
)
e
a
x
+
C
{\displaystyle \int xe^{ax}\,dx={\frac {1}{a^{2}}}(ax-1)e^{ax}+C}
∫
x
n
e
a
x
d
x
=
1
a
x
n
e
a
x
−
n
a
∫
x
n
−
1
e
a
x
d
x
{\displaystyle \int x^{n}e^{ax}\,dx={\frac {1}{a}}x^{n}e^{ax}-{\frac {n}{a}}\int x^{n-1}e^{ax}\,dx}
∫
e
a
x
sin
b
x
d
x
=
e
a
x
a
2
+
b
2
(
a
sin
b
x
−
b
cos
b
x
)
+
C
{\displaystyle \int e^{ax}\sin bx\,dx={\frac {e^{ax}}{a^{2}+b^{2}}}(a\sin bx-b\cos bx)+C}
∫
e
a
x
cos
b
x
d
x
=
e
a
x
a
2
+
b
2
(
a
cos
b
x
+
b
sin
b
x
)
+
C
{\displaystyle \int e^{ax}\cos bx\,dx={\frac {e^{ax}}{a^{2}+b^{2}}}(a\cos bx+b\sin bx)+C}
対数関数を含む積分
[
編集
]
∫
ln
x
d
x
=
x
ln
x
−
x
+
C
{\displaystyle \int \ln x\,dx=x\ln x-x+C}
∫
log
α
x
d
x
=
1
ln
α
(
x
ln
x
−
x
)
+
C
{\displaystyle \int \log _{\alpha }x\,dx={\frac {1}{\ln \alpha }}\left({x\ln x-x}\right)+C}
∫
x
n
ln
x
d
x
=
x
n
+
1
(
n
+
1
)
2
[
(
n
+
1
)
ln
x
−
1
]
+
C
{\displaystyle \int x^{n}\ln x\,dx={\frac {x^{n+1}}{(n+1)^{2}}}[(n+1)\ln x-1]+C}
∫
1
x
ln
x
d
x
=
ln
(
ln
x
)
+
C
{\displaystyle \int {\frac {1}{x\ln {x}}}\,dx=\ln {(\ln {x})}+C}
双曲線関数を含む積分
[
編集
]
∫
sinh
x
d
x
=
cosh
x
+
C
{\displaystyle \int \sinh x\,dx=\cosh x+C}
∫
cosh
x
d
x
=
sinh
x
+
C
{\displaystyle \int \cosh x\,dx=\sinh x+C}
∫
tanh
x
d
x
=
ln
(
cosh
x
)
+
C
{\displaystyle \int \tanh x\,dx=\ln \left(\cosh x\right)+C}
∫
coth
x
d
x
=
ln
(
sinh
x
)
+
C
{\displaystyle \int \coth x\,dx=\ln \left(\sinh x\right)+C}
∫
sech
x
d
x
=
arcsin
(
tanh
x
)
+
C
=
arctan
(
sinh
x
)
+
C
=
gd
x
+
C
gd
x
{\displaystyle \int {\mbox{sech}}\ x\,dx=\arcsin \left(\tanh x\right)+C=\arctan \left(\sinh x\right)+C=\operatorname {gd} x+C\quad \operatorname {gd} x}
:
グーデルマン関数
∫
csch
x
d
x
=
ln
(
tanh
x
2
)
+
C
{\displaystyle \int {\mbox{csch}}\ x\,dx=\ln \left(\tanh {x \over 2}\right)+C}
定積分
[
編集
]
∫
−
∞
∞
e
−
α
x
2
d
x
=
π
α
{\displaystyle \int _{-\infty }^{\infty }e^{-\alpha x^{2}}\,dx={\sqrt {\frac {\pi }{\alpha }}}}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
{
n
−
1
n
⋅
n
−
3
n
−
2
⋅
⋯
⋅
4
5
⋅
2
3
,
if
n
>
1
and
n
is odd
n
−
1
n
⋅
n
−
3
n
−
2
⋅
⋯
⋅
3
4
⋅
1
2
⋅
π
2
,
if
n
>
0
and
n
is even
{\displaystyle \int _{0}^{\frac {\pi }{2}}{\mbox{sin}}^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}{\mbox{cos}}^{n}x\,dx={\begin{cases}{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdot \cdots \cdot {\frac {4}{5}}\cdot {\frac {2}{3}},&{\mbox{if }}n>1{\mbox{ and }}n{\mbox{ is odd}}\\{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdot \cdots \cdot {\frac {3}{4}}\cdot {\frac {1}{2}}\cdot {\frac {\pi }{2}},&{\mbox{if }}n>0{\mbox{ and }}n{\mbox{ is even}}\end{cases}}}
関連項目
[
編集
]
プロジェクト 数学
ポータル 数学
微分積分学の基礎定理
解析学
表
話
編
歴
原始関数の一覧
有理関数
無理関数
三角関数
逆三角関数
双曲線関数
逆双曲線関数
指数関数
対数関数
ガウス関数
表
話
編
歴
微分積分学
Precalculus
二項定理
凹関数
連続関数
階乗
有限差分
自由変数と束縛変数
基本定理
関数のグラフ
線型関数
平均値の定理
ラジアン
ロルの定理
割線
傾き
接線
極限
不定形
(
英語版
)
関数の極限
片側極限
数列の極限
数列の加速法
近似のオーダー
(
英語版
)
ε-δ論法
微分法
連鎖律
導関数
微分
微分方程式
微分作用素
陰関数微分
逆関数の微分
(
英語版
)
ロピタルの定理
ライプニッツ則
対数微分
平均値の定理
ニュートン法
記法
ライプニッツの記法
ニュートンの記法
レギオモンタヌスの問題
相対変化率
(
英語版
)
基本法則
線型性
(
英語版
)
積
商
冪函数
(
英語版
)
停留点
極値の判定
(
英語版
)
最大値の定理
極値
テイラーの定理
積分法
逆微分
弧長
積分定数
積分記号下の微分
(
英語版
)
微分積分学の基本定理
正割の立方の積分
(
英語版
)
正割関数の積分
(
英語版
)
半角正接置換法
(
英語版
)
積分における部分分数
(
英語版
)
二次有理式の積分
(
英語版
)
円周率が22/7より小さいことの証明
基本法則
線型性
(
英語版
)
部分積分
置換積分
台形公式
三角函数置換法
(
英語版
)
ベクトル解析
回転
方向微分
発散
発散定理
勾配
勾配定理
(
英語版
)
グリーンの定理
ラプラシアン
ストークスの定理
多変数微分積分学
曲率
Disc integration
(
英語版
)
発散定理
外微分
ガブリエルのホルン
幾何解析
(
英語版
)
ヘッセ行列
ヤコビ行列と行列式
線積分
Matrix calculus
多重積分
偏微分
バウムクーヘン積分
面積分
テンソル解析
体積分
級数
アーベルの判定法
(
英語版
)
交代
交代級数判定法
(
英語版
)
算術幾何数列
二項
コーシーの凝集判定法
比較判定法
ディリクレの判定法
オイラー–マクローリンの公式
フーリエ
幾何
超幾何
q超幾何
調和
無限
積分判定法
極限比較判定法
(
英語版
)
マクローリン
冪
比判定法
冪根判定法
テイラー
項判定法
(
英語版
)
特殊関数
と数学定数
ベルヌーイ数
ネイピア数
オイラー定数
指数関数
自然対数
ガンマ関数
スターリングの近似
楕円関数
歴史
(
英語版
)
擬等式
(
英語版
)
ブルック・テイラー
コリン・マクローリン
代数の一般性
(
英語版
)
ゴットフリート・ヴィルヘルム・ライプニッツ
無限小
無限小解析
(
英語版
)
アイザック・ニュートン
連続の法則
(
英語版
)
レオンハルト・オイラー
『
流率法
』 (
流率
(
英語版
)
)
『
方法
(
英語版
)
』
一覧
微分法則
(
英語版
)
指数関数の原始関数
双曲線関数の原始関数
逆双曲線関数の原始関数
逆三角関数の原始関数
無理関数の原始関数
対数関数の原始関数
有理関数の原始関数
三角関数の原始関数
ガウス関数の原始関数
極限
数学記号
原始関数
カテゴリ
表
話
編
歴
解析学
の主要なトピックス
微分積分学
:
積分法
微分法
微分方程式
(
常
-
偏
)
基本定理
変分法
ベクトル解析
テンソル解析
積分一覧
導関数一覧
(
英語版
)
実解析
複素解析
関数解析
フーリエ解析
調和解析
測度論
表現論
関数
連続関数
特殊関数
極限
級数
無限
ポータル
・
カテゴリ
典拠管理データベース
: 国立図書館
ドイツ
カテゴリ
:
積分法
数学の一覧
数学に関する記事
隠しカテゴリ:
出典を必要とする記事/2016年1月
GND識別子が指定されている記事