分位数
分位数(ぶんいすう)、分位点(ぶんいてん)、分位値(ぶんいち)、クォンタイル (英: quantile) は、統計の代表値の1種である。
実数 に対し、q 分位数 (q-quantile) は、分布を に分割する値である。
ある種の正の整数 に対し、分布を 等分する 個の値、つまり、 に対する 分位数を、m 分位数(ただし は漢数字)という。 番目の m 分位数を第 i m 分位数といい、また、 等分された分布の 番目の部分を、第 k m 分位、または単に第 k 分位という。
ただし、英語のquantileには、等分割する値(value)の意味と、そのようにして分割された群(group)の二つの意味がある[1]。
定義
[編集]変量統計における分位数
[編集]個のデータ に対する q 分位数 は、昇順にソートしたデータを とすると、
と定義される。ここで、 は床関数、 は天井関数、 は自然数の集合である。
関数 は、数列 の線形内挿数関数への拡張である。関数 の引数 は、範囲 を に内分している。
確率分布の分位数
[編集]1次元確率分布 に対する q 分位数 は
を満たす値として定義される。この式は、累積分布関数 または確率 を使って、
または
とも表せる[2]。
特別な分位数
[編集]いくつかの q に対する q 分位数には、特別な名称がある。
中央値
[編集]1 / 2 分位数を、中央値、メディアン (median)という。中央値は、平均値に代わり、分布を代表する値として使われる。
四分位数
[編集]分位数を、第 q 四分位数、第 q 四分位点、第 q 四分位値、第 q ヒンジ (quartile, hinge) という。1 / 4 分位数(第1四分位数)を下側四分位数、3 / 4 分位数(第3四分位数)を上側四分位数ともいう[3]。
単に四分位数といったばあい、第1・第3四分位数を表す。第2四分位数は中央値である。これらは、分布の統計的ばらつきを表すのに使う。
第1・第3四分位数の差 は、四分位範囲(英: interquartile range, IQR)といい、分布のばらつきの代表値である。分布の代表値として平均値の代わりに中央値を使うときは、IQRを標準偏差や分散の代わりに使う。中央値同様、頑強で、外れ値や極端に広い裾野の影響を受けにくい。
を四分位偏差、 を正規四分位範囲(英: normalized interquartile range, NIQR)といい、IQRの代わりに使うことがある。ここで、 は、標準正規分布のIQRである。正規分布の正規四分位範囲は、標準偏差に等しい。なお係数0.7413を近似値として使うことがある。
四分位数の簡易な求め方として、中央値より上の値の中央値と、中央値より下の値の中央値を使う場合がある。この値を特にヒンジ (hinge) と呼び、それぞれ上側ヒンジ・下側ヒンジ、または、第1・第3ヒンジ(第2ヒンジは中央値)と呼ぶ。ヒンジは、(厳密に計算した)四分位数とは、中央値から離れる方向に少しだけずれる。データ数が多ければずれは小さくなる [要出典]。
三分位数・五分位数・十分位数
[編集]分位数を、第 q 三分位数、第 q 三分位点、第 q 三分位値 (tertile) という。
分位数を、第 q 五分位数、第 q 五分位点、第 q 五分位値 (quintile) という。
分位数を、第 q 十分位数、第 q 十分位点、第 q 十分位値 (decile) という。
パーセンタイル
[編集]分位数を、q パーセンタイル、(第)q 百分位数、(第)q 百分位点、(第)q 百分位値、q パーセント点、q %点 (percentile) という。
分位数を上側 q パーセント点という。これと対比するときには、 分位数は下側 q パーセント点という。また、平均が0の対称分布に対し、 分位数を両側 q パーセント点という。このとき、絶対値が両側 q パーセント点以内に、分布の q %が含まれている。
最大値・最小値
[編集]0分位数は最小値、1分位数は最大値である[4]。最大値と最小値の差は範囲あるいはレンジ(英: range)と呼ばれ、分布のばらつきを表す代表値の一種である。
五数要約
[編集]分布の特徴を最大値、最小値、中央値、上側・下側ヒンジの5つの値、つまり、0, 0.25, 0.5, 0.75, 1分位数で要約することを、五数要約という。五数要約は、しばしば箱ひげ図で図示される。
日本産業規格
[編集]日本産業規格では、分位点を、「分位点とは,分布関数が に一致するか,又はより小さな値から より大きな値に飛ぶときの確率変数の値。確率 を % で表すときは パーセント点 (100p percentile) という。備考1. 確率変数のある区間内で分布関数が一定値となる場合は,その区間内の任意の値が分位点とされる。ただし,である。 2. に対応する確率変数の値をメディアン中央値 (median) という。3. およびに対応する確率変数の値を四分位点 (quartile) という。」と定義している[5]。
脚注
[編集]- ^ Angus Stevenson, ed. (2010), Oxford Dictionary of English (Third ed.), Oxford University Press, p. 1451, ISBN 978-0-19-957112-3
- ^ 累積分布関数が(狭義)単調増加でなければ、この条件を満たす は一意に定まるとは限らない。
- ^ 西岡 2013, p. 12, 1.5 分位数.
- ^ 西岡 2013, p. 8, 1.4 度数分布.
- ^ JIS Z 8101-1 : 1999 統計 − 用語と記号 − 第1部:確率及び一般統計用語 1.10 分位点、日本規格協会、http://kikakurui.com/z8/Z8101-1-1999-01.html
参考文献
[編集]- 西岡康夫『やさしく語る 確率統計』オーム社〈数学チュートリアル〉、2013年。ISBN 978-4-274-21407-3 。
外部リンク
[編集]- Quartiles in Elementary Statistics 15種類の定義がされている